Use dynamic programming to generate a data structure that knows how many there are for each choice, recursively. Then use that data structure to find a random choice.
I seem to be the only person who uses the technique. And I always write it from scratch. But here is working code that hopefully explains it. It will take time O(length_of_string * (length_of_alphabet + 2))
and similar data.
import random
class DPPath:
def __init__ (self):
self.count = 0
self.next = None
def add_option(self, transition, tail):
if self.next is None:
self.next = {}
self.next[transition] = tail
self.count += tail.count
def random (self):
if 0 == self.count:
return None
else:
return self.find(int(random.random() * self.count))
def find (self, pos):
result = self._find(pos)
return "".join(reversed(result))
def _find (self, pos):
if self.next is None:
return []
for transition, tail in self.next.items():
if pos < tail.count:
result = tail._find(pos)
result.append(transition)
return result
else:
pos -= tail.count
raise IndexException("find out of range")
def balanced_dp (n, alphabet):
# Record that there is 1 empty string with balanced parens.
base_dp = DPPath()
base_dp.count = 1
dps = [base_dp]
for _ in range(n):
# We are working backwards towards the start.
prev_dps = [DPPath()]
for i in range(len(dps)):
# prev_dps needs to be bigger in case of closed paren.
prev_dps.append(DPPath())
# If there are closed parens, we can open one.
if 0 < i:
prev_dps[i-1].add_option('(', dps[i])
# alphabet chars don't change paren balance.
for char in alphabet:
prev_dps[i].add_option(char, dps[i])
# Add a closed paren.
prev_dps[i+1].add_option(")", dps[i])
# And we are done with this string position.
dps = prev_dps
# Return the one that wound up balanced.
return dps[0]
# And a quick demo of several random strings.
for _ in range(10):
print(balanced_dp(10, "abc").random())