I want to convert the R
package Hmisc::wtd.quantile()
into python.
I took this as reference and it seems that the logics are different than R:
# First function
def weighted_quantile(values, quantiles, sample_weight = None,
values_sorted = False, old_style = False):
""" Very close to numpy.percentile, but supports weights.
NOTE: quantiles should be in [0, 1]!
:param values: numpy.array with data
:param quantiles: array-like with many quantiles needed
:param sample_weight: array-like of the same length as `array`
:return: numpy.array with computed quantiles.
"""
values = np.array(values)
quantiles = np.array(quantiles)
if sample_weight is None:
sample_weight = np.ones(len(values))
sample_weight = np.array(sample_weight)
assert np.all(quantiles >= 0) and np.all(quantiles <= 1), 'quantiles should be in [0, 1]'
if not values_sorted:
sorter = np.argsort(values)
values = values[sorter]
sample_weight = sample_weight[sorter]
# weighted_quantiles = np.cumsum(sample_weight)
# weighted_quantiles /= np.sum(sample_weight)
weighted_quantiles = np.cumsum(sample_weight)/np.sum(sample_weight)
return np.interp(quantiles, weighted_quantiles, values)
weighted_quantile(values = [0.4890342, 0.4079128, 0.5083345, 0.2136325, 0.6197319],
quantiles = np.arange(0, 1 + 1 / 5, 1 / 5),
sample_weight = [1,1,1,1,1])
>> array([0.2136325, 0.2136325, 0.4079128, 0.4890342, 0.5083345, 0.6197319])
# Second function
def weighted_percentile(data, weights, perc):
"""
perc : percentile in [0-1]!
"""
data = np.array(data)
weights = np.array(weights)
ix = np.argsort(data)
data = data[ix] # sort data
weights = weights[ix] # sort weights
cdf = (np.cumsum(weights) - 0.5 * weights) / np.sum(weights) # 'like' a CDF function
return np.interp(perc, cdf, data)
weighted_percentile([0.4890342, 0.4079128, 0.5083345, 0.2136325, 0.6197319], [1,1,1,1,1], np.arange(0, 1 + 1 / 5, 1 / 5))
>> array([0.2136325 , 0.31077265, 0.4484735 , 0.49868435, 0.5640332 ,
0.6197319 ])
Both are different with R. Any idea?