I have a table in hive, i want to query it on a condition in a loop and store the result in multiple pyspark dataframes dynamically.
Base Query
g1 = """
select * from db.hive_table where group = 1
"""
group_1 = spk.sql(g1)
group_1.show(3)
group_1.printSchema()
print((group_1.count(), len(group_1.columns)))
group_1 = group_1.toPandas()
There are 80 groups in total, Currently running the above code individually for Group = 2, Group = 3 and so on.
My useless iteration code
# changes the geometry type to obj
df_list=[group_1,group_2,group_3,group_4,group_5,group_6,group_7,group_8,group_9,group_10,
group_11,group_12,group_13,group_14,group_15,group_16,group_17,group_18,group_19,group_20,
group_21,group_22,group_23,group_24,group_25,group_26,group_27,group_28,group_29,group_30,
group_31,group_32,group_33,group_34,group_35,group_36,group_37,group_38,group_39,group_40,
group_41,group_42,group_43,group_44,group_45,group_46,group_47,group_48,group_49,group_50,
group_51,group_52,group_53,group_54,group_55,group_56,group_57,group_58,group_59,group_60,
group_61,group_62,group_63,group_64,group_65,group_66,group_67,group_68,group_69,group_70,
group_71,group_72,group_73,group_74,group_75,group_76,group_77,group_78,group_79,group_80,
# num_list=[1,2,3,4,5,5,6,6]
for d in df_list:
for i in range(1,80):
gi = """
select * from db.hive_table where group = $i
"""
group_i = spk.sql(gi)
print(group_i.show(3))
print(group_i.printSchema())
print((group_i.count(), len(group_i.columns)))
return group_i = group_i.toPandas()
Requesting help to guide me to solve this problem and help me increase my coding knowledge.
Thanks in advance.