1

I really struggle to run sktime.TBATS algo on a timeseries I have in a Py dataframe

df_to_process_tbats = engineered_df_to_process[
                        engineered_df_to_process.Pack == product].reset_index(
                        drop=True)
forecaster_tbats = TBATS()

 result = pd.DataFrame(df_to_process_tbats ["Qty"])

forecaster_tbats.fit(result)

The dataframe looks like

           Date   Pack      Qty
0    2019-12-15  name        0
1    2019-12-16  name        0
2    2019-12-17  name        0
3    2019-12-18  name        0
4    2019-12-19  name        0
..          ...                        ...      ...

755  2022-01-08  name        0

Error: TypeError: y must be in an sktime compatible format, of scitype Series, Panel or Hierarchical, for instance a pandas.DataFrame with sktime compatible time indices, or with MultiIndex and last(-1) level an sktime compatible time index. See the forecasting tutorial examples/01_forecasting.ipynb, or the data format tutorial examples/AA_datatypes_and_datasets.ipynb,If you think y is already in an sktime supported input format, run sktime.datatypes.check_raise(y, mtype) to diagnose the error, where mtype is the string of the type specification you want for y. Possible mtype specification strings are as follows. "For Hierarchical scitype: ['pd_multiindex_hier']. 

I tried already using to_convert(), using apply(np.array) - without any success

Can anyone please help me ?

0 Answers0