import keras
import pandas as pd
import numpy as np
from google.colab import files
uploaded = files.upload()
import io
dataset = pd.read_csv(io.BytesIO(uploaded['kc_house_data.csv']))
dataset.head()
id date price bedrooms bathrooms sqft_living sqft_lot floors waterfront view ... grade sqft_above sqft_basement yr_built yr_renovated zipcode lat long sqft_living15 sqft_lot15
0 7129300520 20141013T000000 221900.0 3 1.00 1180 5650 1.0 0 0 ... 7 1180 0 1955 0 98178 47.5112 -122.257 1340 5650
1 6414100192 20141209T000000 538000.0 3 2.25 2570 7242 2.0 0 0 ... 7 2170 400 1951 1991 98125 47.7210 -122.319 1690 7639
2 5631500400 20150225T000000 180000.0 2 1.00 770 10000 1.0 0 0 ... 6 770 0 1933 0 98028 47.7379 -122.233 2720 8062
3 2487200875 20141209T000000 604000.0 4 3.00 1960 5000 1.0 0 0 ... 7 1050 910 1965 0 98136 47.5208 -122.393 1360 5000
4 1954400510 20150218T000000 510000.0 3 2.00 1680 8080 1.0 0 0 ... 8 1680 0 1987 0 98074 47.6168 -122.045 1800 7503
5 rows × 21 columns
features = dataset.drop(columns=['price', 'id', 'date'])
labels = dataset[['price']]
model = keras.models.Sequential([
keras.layers.Dense(19, 'relu', input_shape=(18,)),
keras.layers.Dense(19, 'relu'),
keras.layers.Dense(1)
])
from keras import metrics
model.compile(optimizer='adam', loss='mean_squared_error', metrics=['accuracy'])
model.fit(features, labels, epochs=10, batch_size=5)
Epoch 1/10
676/676 [==============================] - 2s 3ms/step - loss: 65482420224.0000 - accuracy: 0.0000e+00
Epoch 2/10
676/676 [==============================] - 2s 3ms/step - loss: 65566482432.0000 - accuracy: 0.0000e+00
Epoch 3/10
676/676 [==============================] - 2s 3ms/step - loss: 65582268416.0000 - accuracy: 0.0000e+00
Epoch 4/10
676/676 [==============================] - 2s 3ms/step - loss: 65601855488.0000 - accuracy: 0.0000e+00
Epoch 5/10
676/676 [==============================] - 2s 3ms/step - loss: 65537380352.0000 - accuracy: 0.0000e+00
Epoch 6/10
676/676 [==============================] - 2s 2ms/step - loss: 65665077248.0000 - accuracy: 0.0000e+00
Epoch 7/10
676/676 [==============================] - 2s 2ms/step - loss: 65604460544.0000 - accuracy: 0.0000e+00
Epoch 8/10
676/676 [==============================] - 2s 2ms/step - loss: 65511895040.0000 - accuracy: 0.0000e+00
Epoch 9/10
676/676 [==============================] - 2s 3ms/step - loss: 65589620736.0000 - accuracy: 0.0000e+00
Epoch 10/10
676/676 [==============================] - 2s 3ms/step - loss: 65584775168.0000 - accuracy: 0.0000e+00
<keras.callbacks.History at 0x7f3dc673af90>
Asked
Active
Viewed 35 times
-1

Osama Mohammed
- 2,433
- 13
- 29
- 61
1 Answers
0
This is a regression problem, not a classification one.
You can't use accuracy as a metric for a regression problem.
Change metrics to 'mean_squared_error'
in the model.compile
method.
something like this:-
model.compile(loss= "mean_squared_error" , optimizer="adam", metrics=["mean_squared_error"])

desertnaut
- 57,590
- 26
- 140
- 166

AKSHAY KUMAR RAY
- 388
- 1
- 9
-
how can i know if it is good or not? it is just give those at the end? what does it mean? loss: 56571781120.0000 - mean_squared_error: 56571781120.0000 – Osama Mohammed Jul 23 '22 at 20:34