I have 12 variables (x1-x12), and I want to conduct linear programming between these 12 variables and 2 dependent variables(y1,y2).
Here is my original data:
df<-structure(list(Crop = c("Vegetable A", "Vegetable B", "Maize",
"Barley", "Potato", "Fruit A", "Fruit B", "Rice", "Tabacco",
"Rape crop", "Faba bean", "Other beans"), `Nutrient surplus (kg/ha)` = c(495,
495, 287, 269, 330, 355, 355, 226, 194, 203, 130, 137), `Output value (k yuan/ha)` = c(1234.5,
1234.5, 260.637180923077, 160.344827586207, 798.39552631579,
1085, 1085, 385.188901345292, 1075.6125, 216.65625, 196.511045454545,
909), Type = c("A", "B", "A", "B", "B", "A", "B", "A", "C", "B",
"B", "B"), Area = c("x1", "x2", "x3", "x4", "x5", "x6", "x7",
"x8", "x9", "x10", "x11", "x12")), class = c("tbl_df", "tbl",
"data.frame"), row.names = c(NA, -12L))
The relationships between 12 variables and 2 dependent variables are:
y1=495*x1+495*x2+287*x3+269*x4+330*x5+355*x6+355*x7+226*x8+194*x9+203*x10+130*x11+137*x12
y2=123450*x1+123450*x2+26063.7*x3+16034.5*x4+79839.6*x5+108500*x6+108500*x7+38518.9*x8+107561.25*x9+21665.6*x10+19651.1*x11+90900*x12
With the constraints:
x1+x3+x6+x8+x9<=22666.67
x2+x4+x5+x7+x10+x11+x12<=22666.67
x9<=3333.33
I hope that I can have the low y1 but high y2. But y1 and y2 are tied to each other, so I hope to find a balance between them. Maybe similar to Pareto principle?