What is the difference between
tf.keras.losses.CategoricalCrossentropy
and tf.keras.metrics.CategoricalCrossentropy
?
model.compile(optimizer=Adam(learning_rate=lr), loss= 'categorical_crossentropy',
metrics=['accuracy','categorical_crossentropy'])
Question:
15/15 [==============================] - 5s 352ms/step - loss: 0.4043 - accuracy: 0.8634 - categorical_crossentropy: 0.4043 - val_loss: 4.7890 - val_accuracy: 0.7509 - val_categorical_crossentropy: 0.9807
At the end of every epoch I find, loss and categorical_crossentropy have the same value which corresponds to training data.
However, i find difference in the values for the validation data i.e val_loss: 4.7890 vs val_categorical_crossentropy: 0.9807.
Note: my model is
Does anyone know if I am discounting anything here?