I have the following table structure.
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
Baseline | Baseline | Baseline | V1 | V1 | V1 | V2 | V2 | V2 | |
UID | test1 | test2 | test3 | test1 | test2 | test3 | test1 | test2 | test3 |
xyzarf | date1 | date2 | date3 | date4 | date5 | date2 | date6 | date7 | date8 |
abcwer | date9 | date10 | date11 | date1 | date3 | date5 | date6 | date9 | date8 |
defdsg | date1 | date2 | date3 | date4 | date5 | date2 | date6 | date7 | date8 |
I want to transform like this
UID visit type_of_test test_date
xyzarf baseline test1 date1
xyzarf baseline test2 date2
xyzarf baseline test3 date3
xyzarf V1 test1 date4
xyzarf V1 test2 date5
xyzarf V1 test3 date2
xyzarf V2 test1 date6
xyzarf V2 test2 date7
xyzarf V2 test3 date8
abcwer baseline test1 date9
abcwer baseline test2 date10
abcwer baseline test3 date11
abcwer V1 test1 date1
abcwer V1 test2 date3
abcwer V1 test3 date5
abcwer V2 test1 date6
abcwer V2 test2 date9
abcwer V2 test3 date8
defdsg baseline test1 date1
defdsg baseline test2 date2
defdsg baseline test3 date3
defdsg V1 test1 date4
defdsg V1 test2 date5
defdsg V1 test3 date2
defdsg V2 test1 date6
defdsg V2 test2 date7
defdsg V2 test3 date8
I have tried many combinations of pandas pivot table and groupby but I couldn't make it work. Please kindly help.
Edit: Please find the sample converted as dictionary
[{'0': nan,
'1': 'Baseline',
'2': 'Baseline',
'3': 'Baseline',
'4': 'V1',
'5': 'V1',
'6': 'V1',
'7': 'V2',
'8': 'V2',
'9': 'V2'},
{'0': 'UID',
'1': 'test1',
'2': 'test2',
'3': 'test3',
'4': 'test1',
'5': 'test2',
'6': 'test3',
'7': 'test1',
'8': 'test2',
'9': 'test3'},
{'0': 'xyzarf',
'1': 'date1',
'2': 'date2',
'3': 'date3',
'4': 'date4',
'5': 'date5',
'6': 'date2',
'7': 'date6',
'8': 'date7',
'9': 'date8'},
{'0': 'abcwer',
'1': 'date9',
'2': 'date10',
'3': 'date11',
'4': 'date1',
'5': 'date3',
'6': 'date5',
'7': 'date6',
'8': 'date9',
'9': 'date8'},
{'0': 'defdsg',
'1': 'date1',
'2': 'date2',
'3': 'date3',
'4': 'date4',
'5': 'date5',
'6': 'date2',
'7': 'date6',
'8': 'date7',
'9': 'date8'}]