I am using H2O Auto ML and while comparing the time for XGBoost and D-RandomForest, DRF is taking a lot more time than XGBoost!
Code for DRF:
x = hf.columns
y = target_metric
x.remove(y)
aml = H2OAutoML(max_models=1, seed=1, include_algos=["DRF"])
aml.train(x=x, y=y, training_frame=hf)
m = aml.leader
varimp = m.varimp(use_pandas=True)
Code for XGboost:
x = hf.columns
y = target_metric
x.remove(y)
aml = H2OAutoML(max_models=1, seed=1, include_algos=["XGBoost"])
aml.train(x=x, y=y, training_frame=hf)
m = aml.leader
varimp = m.varimp(use_pandas=True)