The time in my csv file is divided into 4 columns, (year, julian day, hour/minut(utc) and second), and I wanted to convert to a single column so that it looks like this: 14/11/2017 00:16:00.
Is there a easy way to do this?
A sample of the code is
cols = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
D14 = pd.read_csv(r'C:\Users\William Jacondino\Desktop\DadosTimeSeries\PIRATA-PROFILE\Dados FLUXO\Dados_brutos_copy-20220804T151840Z-002\Dados_brutos_copy\tm_data_2017_11_14_0016.dat', header=None, usecols=cols, names=["Year","Julian day", "Hour/minut (UTC)", "Second", "Bateria (V)", "PTemp (°C)", "Latitude", "Longitude", "Magnectic_Variation (arb)", "Altitude (m)", "Course (º)", "WS", "Nmbr_of_Satellites (arb)", "RAD", "Tar", "UR", "slp",], sep=',')
D14 = D14.loc[:, ["Year","Julian day", "Hour/minut (UTC)", "Second", "Latitude", "Longitude","WS", "RAD", "Tar", "UR", "slp"]]
My array looks like that:
The file: csv file sample
The "Hour/minut (UTC)" column has the first two digits referring to the Local Time and the last two digits referring to the minute.
The beginning of the time in the "Hour/minut (UTC)" column starts at 016 which refers to 0 hour UTC and minute 16.
and goes up to hour 12 UTC and minute 03.
I wanted to unify everything into a single datetime column so from the beginning to the end of the array:
1 - 2017
1412 - 14/11/2017 12:03:30
but the column "Hour/minut (UTC)" from hour 0 to hour 9 only has one value like this: 9 instead of 09
How do I create the array with the correct datetime?