I have 2 different suggestions:
1) Build a junit test that discovers all subclasses of your base class, and then selects all the methods decorated with the @Override annotations. I have some unit tests that do something similar (i.e. find all subclasses, check that they truly are Serializable for example).
Unfortunately, the verification of whether they call "super" is a little less straightforward. You would either need to have the test look up the source file, and search it, or better (but I don't know how to do this), read the byte code and see if you can detect the call to super.
2) Needing to guarantee a call to super is probably an indicator of a design/interface issue, rather than a coding/implementation issue. If you really want to guarantee that users call super, it would be better to make the super class abstract, clearly designate an abstract implementation method for them to override, and have the super control the flow of execution.
If you want to define a default implementation, so that not all users need to subclass provide implement that method, you could define a default implementation class for people to use. (And if you really want to control it, define that default class implementation method as final to force them to go back to subclassing the abstract parent.)
Code reuse inheritance is always harder to manage, and so it needs to be done carefully. Anyone doing code reuse inheritance has to have a good idea of the internals of the super class to do it right (which is a bit yucky). For example, do you have to call super.method() at the beginning of your overriding code, or at the end? (or could you do it in the middle...)
So in summary, the best solution is to try avoid a design where you have to enforce that.