I am using mlflow to register my model. I try to use 'Scenario 4' when artifacts load to S3 bucket from local.
Add credentials of S3 bucket to .aws/credentials
Set endpoint and mlflow URI:
os.environ["MLFLOW_S3_ENDPOINT_URL"]='https://storage.yandexcloud.net' os.environ["MLFLOW_TRACKING_URI"]='http://:8000'
Log model to S3 via mlflow:
import mlflow import mlflow.sklearn mlflow.set_experiment("my") ... mlflow.sklearn.log_model(model, artifact_path="models_mlflow")
But get error:
MlflowException: API request to http://<IP>:8000/api/2.0/mlflow-artifacts/artifacts/6/95972bcc493c4a8cbd8432fea4cc8bac/artifacts/models_mlflow/model.pkl failed with exception HTTPConnectionPool(host='62.84.121.234', port=8000): Max retries exceeded with url: /api/2.0/mlflow-artifacts/artifacts/6/95972bcc493c4a8cbd8432fea4cc8bac/artifacts/models_mlflow/model.pkl (Caused by ResponseError('too many 503 error responses'))