2

I am currently trying to vectorize a modulo calculation using AVX512. Because there is no AVX modulo operation (except SVML) or an integer division, I am using the following formula d % p = d - int(float(d)/float(p))*p.

However, for very large inputs, I get negative results.

#include <bits/stdc++.h>
#include <immintrin.h>

int main() {

    const auto SIZE = 1024;
    int64_t input[SIZE];
    int64_t output[SIZE] = {};

    const auto p = 1'536; // 1.5 * 1024

    std::iota(input, input + SIZE, 15596705878733779060ULL);

    __m512i _divider_512 = _mm512_set1_epi64(p);

    for (size_t idx = 0; idx < SIZE; idx += 8) {
        __m512i _inputs = _mm512_loadu_si512(&input[idx]);
        __m512i _e = _mm512_cvt_roundpd_epi64(_mm512_div_pd(_mm512_cvtepi64_pd(_inputs), _mm512_cvtepi64_pd(_divider_512)), _MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC);
        __m512i _mult = _mm512_mullo_epi64(_e, _divider_512);
        __m512i _modulo_result = _mm512_sub_epi64(_inputs, _mult);
        _mm512_storeu_si512(&output[idx], _modulo_result);
    }

    for (auto i = 0; i< SIZE; ++i) {
       std::cout << output[i] << std::endl;
    }

}
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
-255
-254
-253
-252
-251
-250
-249
-248
-247
-246
-245
-244
-243
-242
-241
-240
-239
-238
-237
-236
-235
-234
-233
-232
-231
-230
-229
-228
-227
-226
-225
-224
-223
-222
-221
-220
-219
-218
-217
-216
-215
-214
-213
-212
-211
-210
-209
-208
-207
-206
-205
-204
-203
-202
-201
-200
-199
-198
-197
-196
-195
-194
-193
-192
-191
-190
-189
-188
-187
-186
-185
-184
-183
-182
-181
-180
-179
-178
-177
-176
-175
-174
-173
-172
-171
-170
-169
-168
-167
-166
-165
-164
-163
-162
-161
-160
-159
-158
-157
-156
-155
-154
-153
-152
-151
-150
-149
-148
-147
-146
-145
-144
-143
-142
-141
-140
-139
-138
-137
-136
-135
-134
-133
-132
-131
-130
-129
-128
-127
-126
-125
-124
-123
-122
-121
-120
-119
-118
-117
-116
-115
-114
-113
-112
-111
-110
-109
-108
-107
-106
-105
-104
-103
-102
-101
-100
-99
-98
-97
-96
-95
-94
-93
-92
-91
-90
-89
-88
-87
-86
-85
-84
-83
-82
-81
-80
-79
-78
-77
-76
-75
-74
-73
-72
-71
-70
-69
-68
-67
-66
-65
-64
-63
-62
-61
-60
-59
-58
-57
-56
-55
-54
-53
-52
-51
-50
-49
-48
-47
-46
-45
-44
-43
-42
-41
-40
-39
-38
-37
-36
-35
-34
-33
-32
-31
-30
-29
-28
-27
-26
-25
-24
-23
-22
-21
-20
-19
-18
-17
-16
-15
-14
-13
-12
-11
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627

Is this a rounding error between ints and doubles? Or am I missing something else?

And how could I workaround it?

  • 2
    It looks like your input is already to large to convert to `double` without rounding errors (`double` only has 53 bits of precision). – chtz Sep 02 '22 at 07:57
  • I see, thanks. Is there any way to work around this limitation in the above-mentioned case? – InvisibleShadowGhost Sep 02 '22 at 09:48
  • You can apply another mod-operation on the result. If `p` is sufficiently large, you may only need to check once if your result is smaller than 0 or larger/equal to `p`. If `p` is known at compile-time or you use the same `p` for many mod-operations, you may also use the multiplicative inverse (compilers do this automatically: https://godbolt.org/z/Mq6ejTW6j) – chtz Sep 02 '22 at 10:43
  • Yeah, this solves the problem with negative results but not with incorrect ones, right? As can be seen in the output, for the firs input (15596705878733779060 % 1536) it returns 1140, but should correctly be 628). – InvisibleShadowGhost Sep 02 '22 at 11:22
  • [Why should I not `#include `?](https://stackoverflow.com/q/31816095/995714) – phuclv Sep 02 '22 at 12:06
  • 2
    Your input number is too large for a signed `int64_t`. You need `_mm512_cvtepu64_pd` if your input is to be interpreted as unsigned. Technically, assigning too large numbers to signed integer types already induces undefined behavior. – chtz Sep 02 '22 at 15:48
  • Awesome, thanks, this indeed seems to do it. – InvisibleShadowGhost Sep 04 '22 at 08:22

0 Answers0