I am receiving a Segmentation fault (core dumped)
error when trying to blur an image, but I cannot find out why. To achieve a blur, I loop through each element in the 2x2 image array. I then check each of the 9x9 squares around & including it - if they exist, their RGB values are added to a sum (sumRed
, sumGreen
, sumBlue
) for each color. I also increment a counter called numPixel
each time this is successful so I can average the RGB values at the end.
There are other parts of the code, but I am certain that this blur()
function is causing the segfault. This is because when I comment out the body of the function, the segfault goes away.
However, within the function I do not see what is triggering the segfault. I don't think I'm going out of bound in an array, which has been the cause of most of my segfaults in the past. From commenting out certain portions of the code, I also gathered that memcpy()
is not the cause of the error (or at least not the only cause).
There's also a custom header file, which includes definitions for BYTE
and RGBTRIPLE
:
typedef uint8_t BYTE;
...
typedef struct
{
BYTE rgbtBlue;
BYTE rgbtGreen;
BYTE rgbtRed;
} __attribute__((__packed__))
RGBTRIPLE;
The actual code is:
// TODO: Blur image
void blur(int height, int width, RGBTRIPLE image[height][width])
{
RGBTRIPLE new_image[height][width];
BYTE sumRed, sumGreen, sumBlue;
BYTE numPixels;
for (int i = 0; i < height; i++)
{
for (int j = 0; j < width; w++)
{
sumRed = sumGreen = sumBlue = 0;
numPixels = 0;
// Check from 1 higher to 1 lower
for (int h = i - 1; h <= i + 1; h++)
{
// Check from 1 left to 1 right
for (int w = j - 1; w <= j + 1; j++)
{
// If neither index is out of bound, add neighboring RGB values
if (0 <= h < height && 0 <= w < width)
{
sumRed += image[h][w].rgbtRed;
sumGreen += image[h][w].rgbtGreen;
sumBlue += image[h][w].rgbtBlue;
numPixels++;
}
}
}
new_image[i][j].rgbtRed = (BYTE) sumRed / numPixels;
new_image[i][j].rgbtGreen = (BYTE) sumGreen / numPixels;
new_image[i][j].rgbtBlue = (BYTE) sumBlue / numPixels;
}
}
memcpy(&image[0][0], &new_image[0][0], sizeof(image[0][0]) * height * width);
return;
}