0

I'm trying to install install the RAPIDS stack with CUDA through conda in a jupyter notebook inside an AWS Sagemaker Studio instance:

conda install -y -c conda-forge -c rapidsai-nightly -c nvidia libgcc cudf cuml xgboost rapids-blazing

It tried to resolve as many conflicts in the dependencies (around 20 mins later), then it says:

Collecting package metadata (current_repodata.json): done
Solving environment: failed with initial frozen solve. Retrying with flexible solve.
Solving environment: failed with repodata from current_repodata.json, will retry with next repodata source.
Collecting package metadata (repodata.json): done
Solving environment: failed with initial frozen solve. Retrying with flexible solve.
Solving environment: \ 
Found conflicts! Looking for incompatible packages.
This can take several minutes.  Press CTRL-C to abort.
                                                                                /failed

UnsatisfiableError: The following specifications were found to be incompatible with each other:

Output in format: Requested package -> Available versions

Package _openmp_mutex conflicts for:
cudf -> libgcc-ng[version='>=12'] -> _openmp_mutex[version='>=4.5']
libgcc -> libgcc-ng[version='>=7.2.0'] -> _openmp_mutex[version='>=4.5']
python=3.8.10 -> libgcc-ng[version='>=9.4.0'] -> _openmp_mutex[version='>=4.5']
xgboost -> libgcc-ng[version='>=9.3.0'] -> _openmp_mutex[version='>=4.5']
cuml -> libgcc-ng[version='>=12'] -> _openmp_mutex[version='>=4.5']

Package libstdcxx-ng conflicts for:
cuml -> libstdcxx-ng[version='>=12']
python=3.8.10 -> libffi[version='>=3.4.2,<3.5.0a0'] -> libstdcxx-ng[version='>=7.3.0|>=7.5.0']
cudf -> libstdcxx-ng[version='>=12']
python=3.8.10 -> libstdcxx-ng[version='>=9.3.0|>=9.4.0']
rapids-blazing -> cudatoolkit=11.4 -> libstdcxx-ng[version='>=10.3.0|>=9.4.0|>=9.3.0|>=7.3.0']
xgboost -> nccl[version='>=2.14.3.1,<3.0a0'] -> libstdcxx-ng[version='>=10.3.0|>=11.2.0|>=12|>=9.4.0|>=7.2.0']
xgboost -> libstdcxx-ng[version='>=4.9|>=7.3.0|>=7.5.0|>=9.3.0']
cuml -> cuda-python[version='>=11.5,<11.7.1'] -> libstdcxx-ng[version='>=10.3.0|>=9.4.0|>=11.2.0|>=9.3.0|>=7.3.0|>=7.5.0']
libgcc -> libstdcxx-ng[version='>=7.2.0']
libgcc -> gmp[version='>=4.2'] -> libstdcxx-ng[version='>=12|>=4.9|>=7.3.0|>=7.5.0|>=9.4.0']
cudf -> cuda-python[version='>=11.5,<11.7.1'] -> libstdcxx-ng[version='>=10.3.0|>=9.4.0|>=11.2.0|>=9.3.0|>=7.3.0|>=7.5.0|>=4.9']

Package rmm conflicts for:
cuml -> cudf=22.10 -> rmm[version='22.08.*|22.10.*|>=22.10.0a.220827,<22.11.0a0|>=22.10.0a.220828,<22.11.0a0|>=22.10.0a.220829,<22.11.0a0|>=22.10.0a.220830,<22.11.0a0|>=22.10.0a.220831,<22.11.0a0|>=22.10.0a.220901,<22.11.0a0|>=22.10.0a.220902,<22.11.0a0|>=22.10.0a.220903,<22.11.0a0|>=22.10.0a.220905,<22.11.0a0|>=22.10.0a.220906,<22.11.0a0|>=22.8.0a.220905,<22.9.0a0|>=22.8.0a.220903,<22.9.0a0|>=22.8.0a.220902,<22.9.0a0|>=22.8.0a.220901,<22.9.0a0|>=22.8.0a.220831,<22.9.0a0|>=22.8.0a.220830,<22.9.0a0|>=22.8.0a.220829,<22.9.0a0|>=22.8.0a.220828,<22.9.0a0|>=22.8.0a.220827,<22.9.0a0']
cudf -> rmm[version='>=22.10.0a.220827,<22.11.0a0|>=22.10.0a.220828,<22.11.0a0|>=22.10.0a.220829,<22.11.0a0|>=22.10.0a.220830,<22.11.0a0|>=22.10.0a.220831,<22.11.0a0|>=22.10.0a.220901,<22.11.0a0|>=22.10.0a.220902,<22.11.0a0|>=22.10.0a.220903,<22.11.0a0|>=22.10.0a.220905,<22.11.0a0|>=22.10.0a.220906,<22.11.0a0|>=22.8.0a.220905,<22.9.0a0|>=22.8.0a.220903,<22.9.0a0|>=22.8.0a.220902,<22.9.0a0|>=22.8.0a.220901,<22.9.0a0|>=22.8.0a.220831,<22.9.0a0|>=22.8.0a.220830,<22.9.0a0|>=22.8.0a.220829,<22.9.0a0|>=22.8.0a.220828,<22.9.0a0|>=22.8.0a.220827,<22.9.0a0']
xgboost -> py-xgboost==1.6.2dev.rapidsai22.10=cuda_11_py39_0 -> rmm[version='22.02.*|22.04.*|22.06.*|22.08.*|22.10.*']

Package nccl conflicts for:
xgboost -> nccl[version='>=2.10.3.1,<3.0a0|>=2.11.4.1,<3.0a0|>=2.13.4.1,<3.0a0|>=2.14.3.1,<3.0a0|>=2.12.12.1,<3.0a0|>=2.12.7.1,<3.0a0|>=2.7.8.1,<3.0a0']
cuml -> nccl[version='>=2.9.9']
cuml -> cupy[version='>=7.8.0,<11.0.0a0'] -> nccl[version='2.7.8.1.*|>=2.4.6.1,<3.0a0|>=2.7.8.1,<3.0a0|>=2.8.4.1,<3.0a0|>=2.8.3.1,<3.0a0|>=2.12.12.1,<3.0a0|>=2.13.4.1,<3.0a0']

Package libgcc conflicts for:
xgboost -> scipy -> libgcc
libgcc

Package python_abi conflicts for:
xgboost -> python[version='>=3.8,<3.9.0a0'] -> python_abi[version='3.8|3.9',build='*_pypy38_pp73|*_pypy39_pp73']
cuml -> cuda-python[version='>=11.5,<11.7.1'] -> python_abi[version='3.10.*|3.7.*|3.7|3.6.*|3.6|3.9|3.8',build='*_pypy38_pp73|*_pypy39_pp73|*_pypy36_pp73|*_cp36m|*_cp310|*_cp37m|*_pypy37_pp73']
cudf -> cuda-python[version='>=11.5,<11.7.1'] -> python_abi[version='2.7.*|3.10.*|3.7.*|3.7|3.9|3.8|3.6.*|3.6',build='*_cp27mu|*_pypy36_pp73|*_cp36m|*_pypy39_pp73|*_cp310|*_cp37m|*_pypy37_pp73|*_pypy38_pp73']
xgboost -> python_abi[version='3.10.*|3.7.*|3.8.*|3.9.*|3.7|3.6.*|3.6',build='*_pypy36_pp73|*_cp310|*_cp38|*_cp37m|*_cp39|*_pypy37_pp73|*_cp36m']
cuml -> python_abi[version='3.8.*|3.9.*',build='*_cp38|*_cp39']
rapids-blazing -> python_abi[version='3.7.*|3.8.*',build='*_cp38|*_cp37m']
cudf -> python_abi[version='3.8.*|3.9.*',build='*_cp38|*_cp39']

Package ncurses conflicts for:
python=3.8.10 -> readline[version='>=8.1,<9.0a0'] -> ncurses[version='>=6.1,<7.0.0a0|>=6.3,<7.0a0|>=6.1,<7.0a0']
cudf -> python[version='>=3.8,<3.9.0a0'] -> ncurses[version='>=6.1,<7.0.0a0|>=6.2,<7.0.0a0|>=6.3,<7.0a0|>=6.2,<7.0a0|>=6.1,<7.0a0']
xgboost -> python[version='>=3.7,<3.8.0a0'] -> ncurses[version='5.9.*|5.9|>=6.1,<7.0.0a0|>=6.2,<7.0.0a0|>=6.3,<7.0a0|>=6.2,<7.0a0|>=6.1,<7.0a0|>=6.2,<6.3.0a0|>=6.0,<7.0a0|6.0.*']
python=3.8.10 -> ncurses[version='>=6.2,<7.0.0a0|>=6.2,<7.0a0']
cuml -> python[version='>=3.9,<3.10.0a0'] -> ncurses[version='>=6.1,<7.0.0a0|>=6.2,<7.0.0a0|>=6.3,<7.0a0|>=6.2,<7.0a0|>=6.1,<7.0a0']

Package libsqlite conflicts for:
xgboost -> python[version='>=3.10,<3.11.0a0'] -> libsqlite[version='>=3.39.2,<4.0a0']
python=3.8.10 -> sqlite[version='>=3.36.0,<4.0a0'] -> libsqlite[version='3.39.2|3.39.3',build='h753d276_1|h753d276_0']

Package numpy conflicts for:
cudf -> numpy
cudf -> cupy[version='>=9.5.0,<11.0.0a0'] -> numpy[version='>=1.14.6,<2.0a0|>=1.15.4,<2.0a0|>=1.16.5,<2.0a0|>=1.16.6,<2.0a0|>=1.17|>=1.18|>=1.21.6,<2.0a0|>=1.19.5,<2.0a0|>=1.21.5,<2.0a0|>=1.18.5,<2.0a0|>=1.21.2,<2.0a0|>=1.21.4,<2.0a0|>=1.17.5,<2.0a0|>=1.19.4,<2.0a0|>=1.19.2,<2.0a0|>=1.18.4,<2.0a0|>=1.18.1,<2.0a0|>=1.20.3,<2.0a0|>=1.20.2,<2.0a0|>=1.16,<2.0a0|>=1.19']

Package cudf conflicts for:
cudf
cuml -> dask-cudf=22.10 -> cudf[version='22.08.00a220827.*|22.08.00a220828.*|22.08.00a220829.*|22.08.00a220830.*|22.08.00a220831.*|22.08.00a220901.*|22.08.00a220902.*|22.08.00a220903.*|22.08.00a220905.*|22.08.00a220906.*|22.10.00a.*|22.10.00a220827.*|22.10.00a220828.*|22.10.00a220829.*|22.10.00a220830.*|22.10.00a220831.*|22.10.00a220901.*|22.10.00a220902.*|22.10.00a220903.*|22.10.00a220905.*|22.10.00a220906.*']
cuml -> cudf[version='22.08.*|22.10.*']

Package dask-cudf conflicts for:
cuml -> dask-cudf[version='22.08.*|22.10.*']
rapids-blazing -> blazingsql=21.10 -> dask-cudf=21.10

Package libgcc-ng conflicts for:
cudf -> cuda-python[version='>=11.5,<11.7.1'] -> libgcc-ng[version='>=10.3.0|>=9.4.0|>=11.2.0|>=9.3.0|>=7.3.0|>=7.5.0|>=4.9|>=7.2.0']
cudf -> libgcc-ng[version='>=12']

Package cudatoolkit conflicts for:
cudf -> cudatoolkit[version='>=11,<12.0a0']
cudf -> cupy[version='>=9.5.0,<11.0.0a0'] -> cudatoolkit[version='10.0|10.0.*|10.1|10.1.*|10.2|10.2.*|11.0|11.0.*|11.1|11.1.*|>=11.2,<12|9.2|9.2.*|>=11.0,<=11.7|>=11.0,<=11.6|>=11.0,<=11.5']

Package numpy-base conflicts for:
cudf -> numpy -> numpy-base[version='1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.14.3|1.14.3|1.14.3|1.14.3|1.14.3|1.14.3|1.14.4|1.14.4|1.14.4|1.14.4|1.14.4|1.14.4|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.6|1.14.6|1.14.6|1.14.6|1.14.6|1.14.6|1.14.6|1.14.6|1.14.6|1.14.6|1.14.6|1.14.6|1.14.6|1.14.6|1.14.6|1.14.6|1.15.0|1.15.0|1.15.0|1.15.0|1.15.0|1.15.0|1.15.0|1.15.0|1.15.1|1.15.1|1.15.1|1.15.1|1.15.1|1.15.1|1.15.1|1.15.1|1.15.1|1.15.1|1.15.1|1.15.1|1.15.2|1.15.2|1.15.2|1.15.2|1.15.2|1.15.2|1.15.2|1.15.2|1.15.2|1.15.2|1.15.2|1.15.2|1.15.2|1.15.2|1.15.3|1.15.3|1.15.3|1.15.3|1.15.3|1.15.3|1.15.4|1.15.4|1.15.4|1.15.4|1.15.4|1.15.4|1.15.4|1.15.4|1.15.4|1.16.0|1.16.0|1.16.0|1.16.0|1.16.0|1.16.0|1.16.0|1.16.0|1.16.0|1.16.0|1.16.0|1.16.0|1.16.1|1.16.1|1.16.1|1.16.1|1.16.1|1.16.1|1.16.1|1.16.1|1.16.1|1.16.1|1.16.1|1.16.1|1.16.2|1.16.2|1.16.2|1.16.2|1.16.2|1.16.2|1.16.3|1.16.3|1.16.3|1.16.3|1.16.3|1.16.3|1.16.4|1.16.4|1.16.4|1.16.4|1.16.4|1.16.4|1.16.5|1.16.5|1.16.5|1.16.5|1.16.5|1.16.5|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.17.2.*|1.17.3.*|1.17.4.*|1.18.1.*|1.18.5.*|1.19.1|1.19.1|1.19.1|1.19.1|1.19.1|1.19.1|1.19.2|1.19.2|1.19.2|1.19.2|1.19.2|1.19.2|1.19.2|1.19.2|1.19.2|1.19.2|1.19.2|1.19.2|1.19.2|1.19.2|1.20.1|1.20.1|1.20.1|1.20.1|1.20.1|1.20.1|1.20.2|1.20.2|1.20.2|1.20.2|1.20.2|1.20.2|1.20.3|1.20.3|1.20.3|1.20.3|1.20.3|1.20.3|1.21.2|1.21.2|1.21.2|1.21.2|1.21.2|1.21.2|1.21.2|1.21.2|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.22.3|1.22.3|1.22.3|1.22.3|1.22.3|1.22.3|1.23.1|1.9.3|1.9.3|1.9.3|1.9.3|1.9.3|1.9.3|1.9.3|1.9.3|1.9.3|1.9.3|1.9.3|1.9.3|1.9.3|1.9.3|>=1.9.3,<2.0a0|1.17.0|1.17.0|1.17.0|1.17.0',build='py37hde5b4d6_0|py36hde5b4d6_0|py27h2b20989_6|py37h2b20989_6|py37hdbf6ddf_6|py27hdbf6ddf_6|py36hdbf6ddf_6|py27h2b20989_7|py36hdbf6ddf_7|py36h2b20989_7|py35h2b20989_7|py37hdbf6ddf_7|py27h2b20989_7|py36h2b20989_7|py27hdbf6ddf_7|py37hdbf6ddf_7|py36h2b20989_8|py37hdbf6ddf_8|py27h2b20989_8|py35hdbf6ddf_8|py35h2b20989_8|py36h7cdd4dd_9|py37h7cdd4dd_9|py37h3dfced4_9|py36h3dfced4_9|py36h81de0dd_9|py27h74e8950_9|py35h74e8950_9|py36h74e8950_9|py37h74e8950_10|py27h74e8950_10|py27h81de0dd_10|py37h2f8d375_11|py27h2f8d375_11|py36h2f8d375_11|py27hde5b4d6_12|py37hde5b4d6_12|py38hde5b4d6_12|py36h0ea5e3f_1|py27h0ea5e3f_1|py35h0ea5e3f_1|py36h9be14a7_1|py27h9be14a7_1|py36h2b20989_0|py36hdbf6ddf_0|py35hdbf6ddf_0|py36h2b20989_0|py36hdbf6ddf_0|py35hdbf6ddf_0|py36h2b20989_1|py37h2b20989_1|py27hdbf6ddf_1|py27h2b20989_1|py27h2b20989_2|py27hdbf6ddf_2|py36h2b20989_3|py36hdbf6ddf_3|py27hdbf6ddf_3|py27hdbf6ddf_4|py36h2b20989_4|py36hdbf6ddf_4|py37h2f8d375_4|py27h81de0dd_4|py36h2f8d375_4|py27h2f8d375_4|py37h81de0dd_4|py36h81de0dd_4|py37h2f8d375_5|py27h2f8d375_5|py37hde5b4d6_5|py36hde5b4d6_5|py27h7cdd4dd_0|py35h7cdd4dd_0|py27h3dfced4_0|py35h74e8950_0|py27h81de0dd_0|py37h81de0dd_0|py36h2f8d375_0|py27h81de0dd_0|py35h81de0dd_0|py27h81de0dd_1|py37h81de0dd_1|py36h2f8d375_0|py27h81de0dd_0|py36h2f8d375_0|py36h81de0dd_0|py27h81de0dd_0|py36hde5b4d6_0|py37hde5b4d6_0|py27h2f8d375_0|py37h2f8d375_0|py37hde5b4d6_0|py36h2f8d375_0|py37h2f8d375_1|py36hde5b4d6_1|py27h2f8d375_0|py36h2f8d375_0|py36hde5b4d6_0|py37hde5b4d6_0|py27hde5b4d6_0|py27h2f8d375_1|py37h2f8d375_1|py36hde5b4d6_1|py27hde5b4d6_1|py37hde5b4d6_0|py36h2f8d375_0|py37hde5b4d6_0|py27hde5b4d6_0|py27h2f8d375_0|py36h2f8d375_0|py37hde5b4d6_0|py27hde5b4d6_0|py36hde5b4d6_0|py36h2f8d375_0|py27h2f8d375_0|py37hde5b4d6_0|py36h2f8d375_0|py37hde5b4d6_0|py38h2f8d375_0|py38hde5b4d6_0|py27h2f8d375_0|py27hde5b4d6_0|py37h41b4c56_3|py38hdc34a94_3|py37hdc34a94_3|py37ha8aedfd_4|py37hfa32c7d_0|py36hfa32c7d_0|py37h75fe3a5_0|py37hfa32c7d_0|py36h75fe3a5_0|py39h2ae0177_0|py38h21a3de8_1|py37h7d8b39e_0|py39h7d8b39e_0|py38he2ba247_0|py38hfae3a4d_0|py39he2ba247_0|py39hfae3a4d_0|py37h74d4b33_0|py38h74d4b33_0|py38h39b7dee_0|py39h79a1101_0|py37h2b8c604_0|py39h2b8c604_0|py38h2b8c604_0|py310h2b8c604_0|py38hb8be1f0_1|py38hf524024_1|py37hf524024_1|py310hf2716ce_2|py39hb8be1f0_2|py310h9585f30_2|py39hf524024_2|py37hf524024_2|py37h1e6e340_3|py38h1e6e340_3|py310h375b286_3|py39h1e6e340_3|py39hf524024_0|py310h9585f30_0|py39hb8be1f0_0|py310hf2716ce_0|py38h1e6e340_0|py39ha15fc14_0|py310hcba007f_0|py38ha15fc14_0|py310h375b286_0|py39h1e6e340_0|py38hb8be1f0_0|py38hf524024_0|py39ha15fc14_3|py310hcba007f_3|py38ha15fc14_3|py37ha15fc14_3|py38hf524024_2|py38hb8be1f0_2|py37hb8be1f0_2|py310h9585f30_1|py310hf2716ce_1|py37hb8be1f0_1|py39hf524024_1|py39hb8be1f0_1|py310h79a1101_0|py37h79a1101_0|py38h79a1101_0|py39h39b7dee_0|py37h39b7dee_0|py39h74d4b33_0|py37he2ba247_0|py37hfae3a4d_0|py38h7d8b39e_0|py38h34387ca_0|py39h34387ca_0|py37h34387ca_0|py39h21a3de8_1|py37h21a3de8_1|py38h4c65ebe_1|py39h4c65ebe_1|py37h4c65ebe_1|py39h0f7b65f_0|py38hfa32c7d_0|py36hfa32c7d_0|py37h75fe3a5_0|py38h75fe3a5_0|py36h75fe3a5_0|py38hfa32c7d_0|py38h75fe3a5_0|py38h73d599e_4|py39h73d599e_4|py37h73d599e_4|py38ha8aedfd_4|py39ha8aedfd_4|py39hdc34a94_3|py36hdc34a94_3|py36h41b4c56_3|py38h41b4c56_3|py39h41b4c56_3|py39h76555f2_1|py39hfb011de_1|py36hde5b4d6_0|py37h2f8d375_0|py36hde5b4d6_0|py27hde5b4d6_0|py37h2f8d375_0|py37h2f8d375_0|py36hde5b4d6_0|py37h2f8d375_0|py27h2f8d375_0|py36hde5b4d6_0|py27hde5b4d6_0|py27h2f8d375_0|py36h2f8d375_0|py37h2f8d375_0|py37hde5b4d6_1|py36h2f8d375_1|py37h2f8d375_0|py27hde5b4d6_1|py37hde5b4d6_1|py36h2f8d375_1|py27h2f8d375_1|py36hde5b4d6_0|py27hde5b4d6_0|py27hde5b4d6_0|py37h81de0dd_0|py27h2f8d375_0|py37h2f8d375_0|py37h81de0dd_0|py36h81de0dd_0|py37h2f8d375_0|py27h2f8d375_0|py37h2f8d375_1|py36h81de0dd_1|py27h2f8d375_1|py36h2f8d375_1|py36h81de0dd_0|py36h2f8d375_0|py35h2f8d375_0|py37h81de0dd_0|py27h2f8d375_0|py37h2f8d375_0|py37h2f8d375_0|py27h2f8d375_0|py35h2f8d375_0|py35h81de0dd_0|py36h81de0dd_0|py37h74e8950_0|py36h74e8950_0|py27h74e8950_0|py37h3dfced4_0|py35h3dfced4_0|py36h3dfced4_0|py37h7cdd4dd_0|py36h7cdd4dd_0|py27hde5b4d6_5|py36h2f8d375_5|py38hde5b4d6_4|py38h2f8d375_4|py35h81de0dd_4|py35h2f8d375_4|py35h2b20989_4|py35hdbf6ddf_4|py37hdbf6ddf_4|py37h2b20989_4|py27h2b20989_4|py27h2b20989_3|py37hdbf6ddf_3|py37h2b20989_3|py36hdbf6ddf_2|py37hdbf6ddf_2|py37h2b20989_2|py36h2b20989_2|py37hdbf6ddf_1|py36hdbf6ddf_1|py27hdbf6ddf_0|py27h2b20989_0|py27hdbf6ddf_0|py35h2b20989_0|py27h2b20989_0|py35h9be14a7_1|py38h2f8d375_12|py36hde5b4d6_12|py36h2f8d375_12|py27h2f8d375_12|py37h2f8d375_12|py27hde5b4d6_11|py37hde5b4d6_11|py36hde5b4d6_11|py35h2f8d375_10|py27h2f8d375_10|py36h2f8d375_10|py37h2f8d375_10|py35h81de0dd_10|py36h81de0dd_10|py37h81de0dd_10|py36h74e8950_10|py35h74e8950_10|py35h81de0dd_9|py27h81de0dd_9|py37h74e8950_9|py37h81de0dd_9|py27h3dfced4_9|py35h3dfced4_9|py27h7cdd4dd_9|py35h7cdd4dd_9|py27hdbf6ddf_8|py37h2b20989_8|py36hdbf6ddf_8|py36hdbf6ddf_7|py37h2b20989_7|py37h2b20989_7|py35hdbf6ddf_7|py27hdbf6ddf_7|py36h2b20989_6|py37h2f8d375_0|py36h2f8d375_0']
xgboost -> numpy -> numpy-base[version='1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.14.3|1.14.3|1.14.3|1.14.3|1.14.3|1.14.3|1.14.4|1.14.4|1.14.4|1.14.4|1.14.4|1.14.4|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.6|1.14.6|1.14.6|1.14.6|1.14.6|1.14.6|1.14.6|1.14.6|1.14.6|1.14.6|1.14.6|1.14.6|1.14.6|1.14.6|1.14.6|1.14.6|1.15.0|1.15.0|1.15.0|1.15.0|1.15.0|1.15.0|1.15.0|1.15.0|1.15.1|1.15.1|1.15.1|1.15.1|1.15.1|1.15.1|1.15.1|1.15.1|1.15.1|1.15.1|1.15.1|1.15.1|1.15.2|1.15.2|1.15.2|1.15.2|1.15.2|1.15.2|1.15.2|1.15.2|1.15.2|1.15.2|1.15.2|1.15.2|1.15.2|1.15.2|1.15.3|1.15.3|1.15.3|1.15.3|1.15.3|1.15.3|1.15.4|1.15.4|1.15.4|1.15.4|1.15.4|1.15.4|1.15.4|1.15.4|1.15.4|1.16.0|1.16.0|1.16.0|1.16.0|1.16.0|1.16.0|1.16.0|1.16.0|1.16.0|1.16.0|1.16.0|1.16.0|1.16.1|1.16.1|1.16.1|1.16.1|1.16.1|1.16.1|1.16.1|1.16.1|1.16.1|1.16.1|1.16.1|1.16.1|1.16.2|1.16.2|1.16.2|1.16.2|1.16.2|1.16.2|1.16.3|1.16.3|1.16.3|1.16.3|1.16.3|1.16.3|1.16.4|1.16.4|1.16.4|1.16.4|1.16.4|1.16.4|1.16.5|1.16.5|1.16.5|1.16.5|1.16.5|1.16.5|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.17.2.*|1.17.3.*|1.17.4.*|1.18.1.*|1.18.5.*|1.19.1|1.19.1|1.19.1|1.19.1|1.19.1|1.19.1|1.19.2|1.19.2|1.19.2|1.19.2|1.19.2|1.19.2|1.19.2|1.19.2|1.19.2|1.19.2|1.19.2|1.19.2|1.19.2|1.19.2|1.20.1|1.20.1|1.20.1|1.20.1|1.20.1|1.20.1|1.20.2|1.20.2|1.20.2|1.20.2|1.20.2|1.20.2|1.20.3|1.20.3|1.20.3|1.20.3|1.20.3|1.20.3|1.21.2|1.21.2|1.21.2|1.21.2|1.21.2|1.21.2|1.21.2|1.21.2|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.21.5|1.22.3|1.22.3|1.22.3|1.22.3|1.22.3|1.22.3|1.23.1|1.9.3|1.9.3|1.9.3|1.9.3|1.9.3|1.9.3|1.9.3|1.9.3|1.9.3|1.9.3|1.9.3|1.9.3|1.9.3|1.9.3|>=1.9.3,<2.0a0|1.17.0|1.17.0|1.17.0|1.17.0',build='py37hde5b4d6_0|py36hde5b4d6_0|py27h2b20989_6|py37h2b20989_6|py37hdbf6ddf_6|py27hdbf6ddf_6|py36hdbf6ddf_6|py27h2b20989_7|py36hdbf6ddf_7|py36h2b20989_7|py35h2b20989_7|py37hdbf6ddf_7|py27h2b20989_7|py36h2b20989_7|py27hdbf6ddf_7|py37hdbf6ddf_7|py36h2b20989_8|py37hdbf6ddf_8|py27h2b20989_8|py35hdbf6ddf_8|py35h2b20989_8|py36h7cdd4dd_9|py37h7cdd4dd_9|py37h3dfced4_9|py36h3dfced4_9|py36h81de0dd_9|py27h74e8950_9|py35h74e8950_9|py36h74e8950_9|py37h74e8950_10|py27h74e8950_10|py27h81de0dd_10|py37h2f8d375_11|py27h2f8d375_11|py36h2f8d375_11|py27hde5b4d6_12|py37hde5b4d6_12|py38hde5b4d6_12|py36h0ea5e3f_1|py27h0ea5e3f_1|py35h0ea5e3f_1|py36h9be14a7_1|py27h9be14a7_1|py36h2b20989_0|py36hdbf6ddf_0|py35hdbf6ddf_0|py36h2b20989_0|py36hdbf6ddf_0|py35hdbf6ddf_0|py36h2b20989_1|py37h2b20989_1|py27hdbf6ddf_1|py27h2b20989_1|py27h2b20989_2|py27hdbf6ddf_2|py36h2b20989_3|py36hdbf6ddf_3|py27hdbf6ddf_3|py27hdbf6ddf_4|py36h2b20989_4|py36hdbf6ddf_4|py37h2f8d375_4|py27h81de0dd_4|py36h2f8d375_4|py27h2f8d375_4|py37h81de0dd_4|py36h81de0dd_4|py37h2f8d375_5|py27h2f8d375_5|py37hde5b4d6_5|py36hde5b4d6_5|py27h7cdd4dd_0|py35h7cdd4dd_0|py27h3dfced4_0|py35h74e8950_0|py27h81de0dd_0|py37h81de0dd_0|py36h2f8d375_0|py27h81de0dd_0|py35h81de0dd_0|py27h81de0dd_1|py37h81de0dd_1|py36h2f8d375_0|py27h81de0dd_0|py36h2f8d375_0|py36h81de0dd_0|py27h81de0dd_0|py36hde5b4d6_0|py37hde5b4d6_0|py27h2f8d375_0|py37h2f8d375_0|py37hde5b4d6_0|py36h2f8d375_0|py37h2f8d375_1|py36hde5b4d6_1|py27h2f8d375_0|py36h2f8d375_0|py36hde5b4d6_0|py37hde5b4d6_0|py27hde5b4d6_0|py27h2f8d375_1|py37h2f8d375_1|py36hde5b4d6_1|py27hde5b4d6_1|py37hde5b4d6_0|py36h2f8d375_0|py37hde5b4d6_0|py27hde5b4d6_0|py27h2f8d375_0|py36h2f8d375_0|py37hde5b4d6_0|py27hde5b4d6_0|py36hde5b4d6_0|py36h2f8d375_0|py27h2f8d375_0|py37hde5b4d6_0|py36h2f8d375_0|py37hde5b4d6_0|py38h2f8d375_0|py38hde5b4d6_0|py27h2f8d375_0|py27hde5b4d6_0|py37h41b4c56_3|py38hdc34a94_3|py37hdc34a94_3|py37ha8aedfd_4|py37hfa32c7d_0|py36hfa32c7d_0|py37h75fe3a5_0|py37hfa32c7d_0|py36h75fe3a5_0|py39h2ae0177_0|py38h21a3de8_1|py37h7d8b39e_0|py39h7d8b39e_0|py38he2ba247_0|py38hfae3a4d_0|py39he2ba247_0|py39hfae3a4d_0|py37h74d4b33_0|py38h74d4b33_0|py38h39b7dee_0|py39h79a1101_0|py37h2b8c604_0|py39h2b8c604_0|py38h2b8c604_0|py310h2b8c604_0|py38hb8be1f0_1|py38hf524024_1|py37hf524024_1|py310hf2716ce_2|py39hb8be1f0_2|py310h9585f30_2|py39hf524024_2|py37hf524024_2|py37h1e6e340_3|py38h1e6e340_3|py310h375b286_3|py39h1e6e340_3|py39hf524024_0|py310h9585f30_0|py39hb8be1f0_0|py310hf2716ce_0|py38h1e6e340_0|py39ha15fc14_0|py310hcba007f_0|py38ha15fc14_0|py310h375b286_0|py39h1e6e340_0|py38hb8be1f0_0|py38hf524024_0|py39ha15fc14_3|py310hcba007f_3|py38ha15fc14_3|py37ha15fc14_3|py38hf524024_2|py38hb8be1f0_2|py37hb8be1f0_2|py310h9585f30_1|py310hf2716ce_1|py37hb8be1f0_1|py39hf524024_1|py39hb8be1f0_1|py310h79a1101_0|py37h79a1101_0|py38h79a1101_0|py39h39b7dee_0|py37h39b7dee_0|py39h74d4b33_0|py37he2ba247_0|py37hfae3a4d_0|py38h7d8b39e_0|py38h34387ca_0|py39h34387ca_0|py37h34387ca_0|py39h21a3de8_1|py37h21a3de8_1|py38h4c65ebe_1|py39h4c65ebe_1|py37h4c65ebe_1|py39h0f7b65f_0|py38hfa32c7d_0|py36hfa32c7d_0|py37h75fe3a5_0|py38h75fe3a5_0|py36h75fe3a5_0|py38hfa32c7d_0|py38h75fe3a5_0|py38h73d599e_4|py39h73d599e_4|py37h73d599e_4|py38ha8aedfd_4|py39ha8aedfd_4|py39hdc34a94_3|py36hdc34a94_3|py36h41b4c56_3|py38h41b4c56_3|py39h41b4c56_3|py39h76555f2_1|py39hfb011de_1|py36hde5b4d6_0|py37h2f8d375_0|py36hde5b4d6_0|py27hde5b4d6_0|py37h2f8d375_0|py37h2f8d375_0|py36hde5b4d6_0|py37h2f8d375_0|py27h2f8d375_0|py36hde5b4d6_0|py27hde5b4d6_0|py27h2f8d375_0|py36h2f8d375_0|py37h2f8d375_0|py37hde5b4d6_1|py36h2f8d375_1|py37h2f8d375_0|py27hde5b4d6_1|py37hde5b4d6_1|py36h2f8d375_1|py27h2f8d375_1|py36hde5b4d6_0|py27hde5b4d6_0|py27hde5b4d6_0|py37h81de0dd_0|py27h2f8d375_0|py37h2f8d375_0|py37h81de0dd_0|py36h81de0dd_0|py37h2f8d375_0|py27h2f8d375_0|py37h2f8d375_1|py36h81de0dd_1|py27h2f8d375_1|py36h2f8d375_1|py36h81de0dd_0|py36h2f8d375_0|py35h2f8d375_0|py37h81de0dd_0|py27h2f8d375_0|py37h2f8d375_0|py37h2f8d375_0|py27h2f8d375_0|py35h2f8d375_0|py35h81de0dd_0|py36h81de0dd_0|py37h74e8950_0|py36h74e8950_0|py27h74e8950_0|py37h3dfced4_0|py35h3dfced4_0|py36h3dfced4_0|py37h7cdd4dd_0|py36h7cdd4dd_0|py27hde5b4d6_5|py36h2f8d375_5|py38hde5b4d6_4|py38h2f8d375_4|py35h81de0dd_4|py35h2f8d375_4|py35h2b20989_4|py35hdbf6ddf_4|py37hdbf6ddf_4|py37h2b20989_4|py27h2b20989_4|py27h2b20989_3|py37hdbf6ddf_3|py37h2b20989_3|py36hdbf6ddf_2|py37hdbf6ddf_2|py37h2b20989_2|py36h2b20989_2|py37hdbf6ddf_1|py36hdbf6ddf_1|py27hdbf6ddf_0|py27h2b20989_0|py27hdbf6ddf_0|py35h2b20989_0|py27h2b20989_0|py35h9be14a7_1|py38h2f8d375_12|py36hde5b4d6_12|py36h2f8d375_12|py27h2f8d375_12|py37h2f8d375_12|py27hde5b4d6_11|py37hde5b4d6_11|py36hde5b4d6_11|py35h2f8d375_10|py27h2f8d375_10|py36h2f8d375_10|py37h2f8d375_10|py35h81de0dd_10|py36h81de0dd_10|py37h81de0dd_10|py36h74e8950_10|py35h74e8950_10|py35h81de0dd_9|py27h81de0dd_9|py37h74e8950_9|py37h81de0dd_9|py27h3dfced4_9|py35h3dfced4_9|py27h7cdd4dd_9|py35h7cdd4dd_9|py27hdbf6ddf_8|py37h2b20989_8|py36hdbf6ddf_8|py36hdbf6ddf_7|py37h2b20989_7|py37h2b20989_7|py35hdbf6ddf_7|py27hdbf6ddf_7|py36h2b20989_6|py37h2f8d375_0|py36h2f8d375_0']The following specifications were found to be incompatible with your system:

  - feature:/linux-64::__cuda==11.4=0
  - feature:/linux-64::__glibc==2.31=0
  - feature:|@/linux-64::__cuda==11.4=0
  - feature:|@/linux-64::__glibc==2.31=0
  - cudf -> __glibc[version='>=2.17,<3.0.a0']
  - cudf -> cupy[version='>=9.5.0,<11.0.0a0'] -> __glibc[version='>=2.17']
  - cuml -> __glibc[version='>=2.17,<3.0.a0']
  - cuml -> cupy[version='>=7.8.0,<11.0.0a0'] -> __glibc[version='>=2.17']
  - libgcc -> libgcc-ng[version='>=7.2.0'] -> __glibc[version='>=2.17']
  - rapids-blazing -> cudatoolkit=11.4 -> __glibc[version='>=2.17,<3.0.a0']
  - xgboost -> __cuda
  - xgboost -> __glibc[version='>=2.17']
  - xgboost -> cudatoolkit[version='>=11,<12.0a0'] -> __glibc[version='>=2.17,<3.0.a0']

Your installed version is: 11.4

But when I tried to run import xgboost, I get an ModuleNotFound.

There is this post on the specific version numbers to install but it's rather out of date https://towardsdatascience.com/quick-install-guide-nvidia-rapids-blazingsql-on-aws-sagemaker-cb4ddd809bf5 (from 4 years ago)

How to installing the cuda rapids + xgboost stack through conda in AWS Sagemaker?


Note: Somehow on Kaggle notebooks, it worked out of the box, e.g. https://www.kaggle.com/code/alvations/numerai-baseline-2015-gpu

talonmies
  • 70,661
  • 34
  • 192
  • 269
alvas
  • 115,346
  • 109
  • 446
  • 738
  • There's a related question but for Google collab on https://stackoverflow.com/questions/69407234/not-able-to-install-cudf-cupy-and-cuml-into-colab-with-rapids-ai-version-21-08 – alvas Sep 06 '22 at 14:54
  • Can you provide a minimal, reproducible example? How did you create the instance, what Python version are you using? How did you create a conda environment? Did you use the install commands on https://rapids.ai/start.html ? This kind of information will help the community assist you. – Nick Becker Sep 06 '22 at 15:11
  • It's a default Sagemaker studio instance, with base ubuntu image. – alvas Sep 06 '22 at 15:26

1 Answers1

0

After some trying around, this combination from https://rapids.ai/start.html#get-rapids works:

conda create -n rapids-22.08 -c rapidsai -c nvidia -c conda-forge  \
    cudf=22.08 cuml=22.08 cugraph=22.08 cuspatial=22.08 cuxfilter=22.08 cusignal=22.08 cucim=22.08 python=3.8 cudatoolkit=11.5 \
    jupyterlab dask-sql graphistry dash pycaret xarray-spatial

Although, I have 11.6 CUDA on my instance.

alvas
  • 115,346
  • 109
  • 446
  • 738