Similar to the 'hyphen-ish' character of "-1" being called "unary minus", "?:" is called "trenary" because it requires 3 parts: the condition, the "true" case statement and the "false" case statement. To use "?:" you must supply 3 "terms".
Answering the question in the title, no, you cannot omit one part.
The following responds to "What can I do in these situations except:"
Given that your two examples show an interest in performing (or not) a mathematical operation on the variable 'x', here is a "branchless" approach toward that (limited) objective. ("Branchless" coding techniques seek to reduce the impact of "branch prediction misses", an efficiency consideration to reduce processing time.)
Note: the for() loop is only a "test harness" that presents 3 different values for 'y' to be compared to the value of 'x'. The variable 'n' makes more obvious your OP constant '2'. Further, as you are aware, performing multiplication OR division are two completely different operations. This example shows multiplication only. (Replace the '*' with '/' for division with the standard caveat regarding "division by zero" being undefined.) Depending on the probability of "cache misses" and "branch prediction" in modern CPUs, this seemingly complex calculation may require much less processing time than a 'true/false branch' that may bypass processing.
int n = 2; // multiplier
for( int y = 4; y <= 6; y++ ) { // three values for 'y'
int xr = 5; // one value for 'xr'egular
int xb = 5; // same value for 'xb'ranch
(xr == y) ? xr *= n : 1; // to be legitimate C
// when x == y the rhs becomes (n-1)*(1)+1 which equals n
// when x != y the rhs becomes (n-1)*(0)+1 which equals 1 (identity)
// Notice the rhs includes a conditional
// and that the entire statement WILL be evaluated, never bypassed.
xb *= ((n-1)*(xb==y))+1;
printf( "trenaryX = %2d, branchlessX = %2d\n", xr, xb );
}
Output
trenaryX = 5, branchlessX = 5
trenaryX = 10, branchlessX = 10
trenaryX = 5, branchlessX = 5
I hope this makes clear that "trenary" means "3 part" and that this digression into "branchless coding" may have broadened your horizons.