Say, we had 2 arrays of unique values:
a = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) # any values are possible,
b = np.array([0, 11, 12, 13, 14, 15, 16, 17, 18, 19]) # sorted values are for demonstration
, where a[0]
corresponds to b[0]
, a[1]
to b[11]
, a[2]
-b[12]
, etc.
Then, due to some circumstances we randomly lost some of it and received noise elements from/to both a
& b
. Now 'useful data' in a
and b
are kind of 'eroded' like this:
a = np.array([0, 1, 313, 2, 3, 4, 5, 934, 6, 8, 9, 730, 241, 521])
b = np.array([112, 514, 11, 13, 16, 955, 17, 18, 112])
The noise elements have negligible probability to coincide with any of 'useful data'. So, if to search them, we could find the left ones and to define the 'index pairing array':
cor_tab = np.array([[1,2], [4,3], [8,4], [9,7]])
which, if applied, provides pairs of 'useful data' left:
np.column_stack((a[cor_tab[:,0]], b[cor_tab[:,1]]))
array([[1, 11],
[3, 13],
[6, 16],
[8, 18]])
The question: Given the 'eroded' a
and b
, how to combine them into numpy array such that:
- values indexed in cor_tab are paired in the same column/row,
- lost values are treated as
-1
, - noise as 'don't care', and
array looks like this:
[[ -1 112],
[ 0 514],
[ 1 11],
[313 -1],
[ 2 -1],
[ 3 13],
[ 4 -1],
[ 5 -1],
[934 -1],
[ 6 16],
[ -1 955],
[ -1 17],
[ 8 18],
[ 9 -1],
[730 -1],
[241 -1],
[521 112]]
, where 'useful data' is at indices: 2, 5, 9, 12?
Initially I solved this, in dubious way:
import numpy as np
def combine(aa, bb, t):
c0 = np.empty((0), int)
c1 = np.empty((0), int)
# add -1 & 'noise' at the left side:
if t[0][0] > t[0][1]:
c0 = np.append(c0, aa[: t[0][0]])
c1 = np.append(c1, [np.append([-1] * (t[0][0] - t[0][1]), bb[: t[0][1]])])
else:
c0 = np.append(c0, [np.append([-1] * (t[0][1] - t[0][0]), aa[: t[0][0]])])
c1 = np.append(c1, bb[: t[0][1]])
ind_compenstr = t[0][0] - t[0][1] # 'index compensator'
for i, ii in enumerate(t):
x = ii[0] - ii[1] - ind_compenstr
# add -1 & 'noise' in the middle:
if x > 0:
c0 = np.append(c0, [aa[ii[0]-x:ii[0]]])
c1 = np.append(c1, [[-1] * x])
elif x == 0:
c0 = np.append(c0, [aa[ii[0]-x:ii[0]]])
c1 = np.append(c1, [bb[ii[1]-x:ii[1]]])
else:
x = abs(x)
c0 = np.append(c0, [[-1] * x])
c1 = np.append(c1, [bb[ii[1]-x:ii[1]]])
# add useful elements:
c0 = np.append(c0, aa[ii[0]])
c1 = np.append(c1, bb[ii[1]])
ind_compenstr += x
# add -1 & 'noise' at the right side:
l0 = len(aa) - t[-1][0]
l1 = len(bb) - t[-1][1]
if l0 > l1:
c0 = np.append(c0, aa[t[-1][0] + 1:])
c1 = np.append(c1, [np.append(bb[t[-1][1] + 1:], [-1] * (l0 - l1))])
else:
c0 = np.append(c0, [np.append(aa[t[-1][0] + 1:], [-1] * (l1 - l0))])
c1 = np.append(c1, bb[t[-1][1] + 1:])
return np.array([c0,c1])
But bellow I suggest another solution.