I am using OpenCV to triangulate the position of an object, and am trying to create some kind of formula to pass the coordinates that I obtain through to drag a pull arrow, casting a fishing rod. I tried using polynomial regression to a very high degree, but it is still inaccurate due to the regression not being able to take into account an (x,y) input to an (x,y) output, rather just an x input to x output etc. I have attached screenshots below for clarity, alongside my obtained formulas from the regression. Any help/ideas/suggestions would be appreciated, thanks.
Edit:
The xy coordinates are organized from the landing position to the position where the arrow was pulled to for the bobber to land there. This is because the fishing blob is the input, and the arrow pull end location comes from the blob location. I am using OpenCV to obtain the x,y coordinates, which I believe is just an x,y coordinate system of the 2d screen.
The avatar position is locked, and the button to cast the rod is located at an absolute position of (957,748).
The camera position is locked with no rotation or movement.
I believe that the angle the rod is cast at is likely a 1:1 opposite of where it is pulled to. Ex: if the rod was pulled to 225 degrees it would cast at 45 degrees. I am not 100% sure, but I think that the strength is linear. I used linear regression partially because I was not sure about this. There is no altitude difference/slope/wind that affects the cast. The only affecting factor of landing position is where the arrow is dragged to. The arrow will not drag past the 180/360 degree position sideways (relative to cast button) and will simply lock the cast angle in the x direction if it is held there.
The x-y data was collected with a simple program to move the mouse to the same position (957,748) and drag the arrow to cast the rod with different drag strengths/positions to create some kind of line of best fit for a general formula for casting the rod. The triang_x and y functions included are what the x and y coordinates were run through respectively to triangulate the ending drag coordinate for the arrow. This does not work very well because matching the x-to-x and y-to-y doesn't account for x and y data in each formula, just x-to-x etc.
Left column is fishing spot coordinates, right column is where arrow is dragged to to hit the fish spot.
(1133,359) to (890,890)
(858,334) to (886, 900)
(755,579) to (1012,811)
(1013,255) to (933,934)
(1166,469) to (885,855)
(1344,654) to (855,794)
(804,260) to (1024,939)
(1288,287) to (822,918)
(624,422) to (1075,869)
(981,460) to (949,851)
(944,203) to (963,957)
(829,367) to (1005,887)
(1129,259) to (885,932)
(773,219) to (1036,949)
(1052,314) to (919,908)
(958,662) to (955,782)
(1448,361) to (775,906)
(1566,492) to (751,837)
(1275,703) to (859,764)
(1210,280) to (852,926)
(668,513) to (1050,836)
(830,243) to (1011,939)
(688,654) to (1022,792)
(635,437) to (1072,864)
(911,252) to (976,935)
(1499,542) to (785,825)
(793,452) to (1017,860)
(1309,354) to (824,891)
(1383,522) to (817,838)
(1262,712) to (867,758)
(927,225) to (980,983)
(644,360) to (1097,919)
(1307,648) to (862,798)
(1321,296) to (812,913)
(798,212) to (1026,952)
(1315,460) to (836,854)
(700,597) to (1028,809)
(868,573) to (981,811)
(1561,497) to (758,838)
(1172,588) to (896,816)
Shows bot actions taken within function and how formula is used.
coeffs_x = np.float64([
-7.9517089428836911e+005,
4.1678460255861210e+003,
-7.5075555590709371e+000,
4.2001528427460097e-003,
2.3767929866943760e-006,
-4.7841176483548307e-009,
6.1781765539212100e-012,
-5.2769581174002655e-015,
-4.3548777375857698e-019,
2.5342561455214514e-021,
-1.4853535063513160e-024,
1.5268121610772846e-027,
-2.9667978919426497e-031,
-9.5670287721717018e-035,
-2.0270490020866057e-037,
-2.8248895597371365e-040,
-4.6436110892973750e-044,
6.7719507722602512e-047,
7.1944028726480678e-050,
1.2976299392064562e-052,
7.3188205383162127e-056,
-6.3972284918241943e-059,
-4.1991571617797430e-062,
2.5577340340980386e-066,
-4.3382682133956009e-068,
1.5534384486024757e-071,
5.1736875087411699e-075,
7.8137258396620031e-078,
2.6423817496804479e-081,
2.5418438527686641e-084,
-2.8489136942892384e-087,
-2.3969101111450846e-091,
-3.3499890707855620e-094,
-1.4462592756075361e-096,
6.8375394909274851e-100,
-2.4083095685910846e-103,
7.0453288171977301e-106,
-2.8342463921987051e-109
])
triang_x = np.polynomial.Polynomial(coeffs_x)
coeffs_y = np.float64([
2.6215449742035207e+005,
-5.7778572049616614e+003,
5.1995066291482431e+001,
-2.3696608508824663e-001,
5.2377319234985116e-004,
-2.5063316505492962e-007,
-9.2022083686040928e-010,
3.8639053124052189e-013,
2.7895763914453325e-015,
7.3703786336356152e-019,
-1.3411964395287408e-020,
1.5532055573746500e-023,
-6.9719956967963252e-027,
1.9573598517734802e-029,
-3.3847482160483597e-032,
-5.5368209294319872e-035,
7.1463648457003723e-038,
4.6713369979545088e-040,
-7.5070219026265008e-043,
-4.5089676791698693e-047,
-3.2970870269153785e-049,
1.6283636917056585e-051,
-1.4312555782661719e-054,
7.8463441723355399e-058,
1.9439588820918080e-060,
2.1292310369635749e-063,
-1.4191866473449773e-065,
-2.1353539347524828e-070,
2.5876946863828411e-071,
-1.6182477348921458e-074
])
triang_y = np.polynomial.Polynomial(coeffs_y)