I used StandardScaler() to scale my original data and the original data's shape was (91,4).
c.shape
> (91,4)
column = c.columns.to_list()
scaler = StandardScaler()
d = scaler.fit_transform(c)
and as I continue to model, I had to difference the data and added more columns so ended up with (90,6).
d.shape
> (90,6)
scaler.inverse_transform(d)
ValueError: operands could not be broadcast together with shapes (90,6) (4,) (90,6)
How do I inverse scale back to original?
Thank you
Edit) example
Original:
Feature A | Feature B | Feature C |Feature D |
22Q1 | 2.9e4 | 1092 | 1.86e7 | 50293 |
22Q2 | 1.4e5 | 1290 | 2.2e7 | 48240 |
22Q3 | 1.78e5 | 1121 | 1.9e7 | 61546 |
22Q4 | 3.08e5 | 895 | 2.24e7 | 57209 |
scaled:
FeatureA |Feature B|Feature C|Feature D|PredictTrain|PredictTest|
22Q1| 0.048 | 0.051 | 0.8489 |-0.095 | 0.01874 | 0.0187 |
22Q2| 0.002 | -.005 | 0.852 | 0.05 | 0.0226 | 0.01866 |
22Q3| 0.172 | -.0537 | -0.772 | -0.198 | 0.0047 | 0.01885 |
22Q4| 0.577 | -0.018 | -0.222 | -0.81 | 0.0287 | 0.016 |
need above to an original form.