Toy example
I have two arrays, which have different shape, for example:
import numpy as np
matrix = np.arange(5*6*7*8).reshape(5, 6, 7, 8)
vector = np.arange(1, 20, 2)
What I want to do is to multiply each element of the matrix by one of the element of 'vector' and then do the sum over the last two axis. For that, I have an array with the same shape as 'matrix' that tells me which index to use, for example:
Idx = (matrix+np.random.randint(0, vector.size, size=matrix.shape))%vector.size
I know that one of the solution would be to do:
matVec = vector[Idx]
res = np.sum(matrix*matVec, axis=(2, 3))
or even:
res = np.einsum('ijkl, ijkl -> ij', matrix, matVec)
Problem
However, my problems is that my arrays are big and the construction of matVec takes both times and memory. So is there a way to bypass that and still achieve the same result ?
More realistic example
Here is a more realistic example of what I'm actually doing:
import numpy as np
order = 20
dim = 23
listOrder = np.arange(-order, order+1, 1)
N, P = np.meshgrid(listOrder, listOrder)
K = np.arange(-2*dim+1, 2*dim+1, 1)
X = np.arange(-2*dim, 2*dim, 1)
tN = np.einsum('..., p, x -> ...px', N, np.ones(K.shape, dtype=int), np.ones(X.shape, dtype=int))#, optimize=pathInt)
tP = np.einsum('..., p, x -> ...px', P, np.ones(K.shape, dtype=int), np.ones(X.shape, dtype=int))#, optimize=pathInt)
tK = np.einsum('..., p, x -> ...px', np.ones(P.shape, dtype=int), K, np.ones(X.shape, dtype=int))#, optimize=pathInt)
tX = np.einsum('..., p, x -> ...px', np.ones(P.shape, dtype=int), np.ones(K.shape, dtype=int), X)#, optimize=pathInt)
tL = tK + tX
mini, maxi = -4*dim+1, 4*dim-1
NmPp2L = np.arange(2*mini-2*order, 2*maxi+2*order+1)
Idx = (2*tL+tN-tP) - NmPp2L[0]
np.random.seed(0)
matrix = (np.random.rand(Idx.size) + 1j*np.random.rand(Idx.size)).reshape(Idx.shape)
vector = np.random.rand(np.max(Idx)+1) + 1j*np.random.rand(np.max(Idx)+1)
res = np.sum(matrix*vector[Idx], axis=(2, 3))