The below code used for regression plot and now I am wondering how can I estimate and print some statistical variables such as correlation, s-square and p value on each plot?
The second problem is how can I change plot color? For example how can I convert it from blue to red?
code link: https://colab.research.google.com/drive/1jFy2iCywVQB3Ghq52phZlmGSr7bPFib5?usp=sharing
import numpy as np
import pandas as pd
from google.colab import files
data = files.upload()
from pandas.io import excel
import io
df = pd.read_excel(data['yieldDataset.xlsx'])
df
data1 = df.drop({'Date','class'},1)
from sklearn import preprocessing
names = data1.columns
scalar = preprocessing.MinMaxScaler()
data2 = scalar.fit_transform(data1)
normal = pd.DataFrame(data2, columns = names)
normal['class'] = df['class']
normal
import seaborn as sns
import matplotlib
import matplotlib.pyplot as plt
sns.pairplot(normal, kind = 'reg')