Short Answer:
Assuming the innermost loop operation is O(1), the time compexity of your code is O(n^5).
Longer Answer:
Let's start with a simpler example of 2 dependent loops:
for (int i=0; i<n; ++i) {
for (int j=0; j<i; ++j) {
// Some O(1) operation
}
}
The outer loop will run n times and the inner loop will run 1...n times, and on average:
(1 + 2 + ... + n)/n = n(n+1)/2/n = O(n)
So the overall complexity for this simpler example is O(n^2).
Now to your case:
Note that I assumed the operation in the innermost loop is done in O(1).
for (int i=0; i< n*n; i++){
for (int j=0; j<n; j++){
for (int k=0; k<i; k++){
// Some O(1) operation
}
}
}
The 1st outer loop will run n^2 times.
The 2nd outer loop (i.e. the middle loop) will run n times.
So the 2 outer loop together will run in O(n^3).
The number of times the inner loop will run on average is now O(n^2) because the number of iterations will now be 1..n^2 (instead of 1..n):
(1 + 2 + ... n^2)/n^2 = (n^2)(n^2+1)/2/(n^2) = O(n^2).
Therefore the overall time complexity is O(n^5).
Addendum:
The code below is not in any case a proof regarding the complexity, since measuring for specific values of n does not prove anything about the asymptotic behavior of the time function, but it can give you a "feel" about the number of operations that are done.
#include <iostream>
#include <ctype.h>
void test(int n)
{
int64_t counter = 0;
for (int i = 0; i < n * n; i++) {
for (int j = 0; j < n; j++) {
for (int k = 0; k < i; k++) {
counter++;
}
}
}
std::cout << "n:" << n << ", counter:" << counter << std::endl;
}
int main()
{
test(10);
test(100);
test(1000);
}
Output:
n:10, counter:49500
n:100, counter:4999500000
n:1000, counter:499999500000000
I believe it is quite clear that the number of operations is close to n^5/2, and since constants like 1/2 do not apply: O(n^5).