I would like to change a value in one column if two conditions depending of values in other columns are meet.
i.e. when the values of df$StationID is "LaKo-.10" and the value of df$Depth interval
is "400-1000", I would like the df$max depth
become 1000 instead of 0.
I have tried the given code, but every values of the max depth is changed. And not only the one selected by the conditions :
df$`max depth` <- df$`max depth`[df$StationID == "LaKo2018-.10" & df$`Depth interval` == '400-1000'] <- 1000
The given dataset :
df <- structure(list(StationID = c("LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1",
"LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1",
"LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1",
"LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1",
"LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1",
"LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1",
"LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.10", "LaKo2018-.10",
"LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10",
"LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10",
"LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10",
"LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10",
"LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10",
"LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10",
"LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10",
"LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1",
"LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1",
"LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1",
"LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1",
"LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1",
"LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1",
"LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10",
"LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10",
"LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10",
"LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10",
"LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10",
"LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10",
"LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10",
"LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10",
"LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10",
"LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10",
"LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10",
"LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10",
"LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10",
"LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10",
"LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10",
"LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1",
"LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1",
"LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1",
"LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1",
"LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1",
"LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.1",
"LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10",
"LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10",
"LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10",
"LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10",
"LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10",
"LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10",
"LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10",
"LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.1", "LaKo2018-.1",
"LaKo2018-.10", "LaKo2018-.1", "LaKo2018-.10", "LaKo2018-.1",
"LaKo2018-.1", "LaKo2018-.10", "LaKo2018-.1", "LaKo2018-.1",
"LaKo2018-.1", "LaKo2018-.10", "LaKo2018-.1", "LaKo2018-.1",
"LaKo2018-.1", "LaKo2018-.10", "LaKo2018-.1", "LaKo2018-.10",
"LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.1",
"LaKo2018-.10", "LaKo2018-.1", "LaKo2018-.1", "LaKo2018-.10",
"LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10", "LaKo2018-.10"
), `Depth interval` = c("0-25", "0-25", "0-25", "0-25", "0-25",
"0-25", "0-25", "0-25", "0-25", "0-25", "0-25", "0-25", "0-25",
"0-25", "0-25", "0-25", "0-25", "0-25", "0-25", "0-25", "0-25",
"0-25", "0-25", "0-25", "0-25", "0-25", "0-25", "0-25", "0-25",
"0-25", "0-50", "0-50", "0-50", "0-50", "0-50", "0-50", "0-50",
"0-50", "0-50", "0-50", "0-50", "0-50", "0-50", "0-50", "0-50",
"0-50", "0-50", "0-50", "0-50", "0-50", "0-50", "0-50", "0-50",
"0-50", "0-50", "0-50", "0-50", "0-50", "0-50", "0-50", "100-175",
"100-175", "100-175", "100-175", "100-175", "100-175", "100-175",
"100-175", "100-175", "100-175", "100-175", "100-175", "100-175",
"100-175", "100-175", "100-175", "100-175", "100-175", "100-175",
"100-175", "100-175", "100-175", "100-175", "100-175", "100-175",
"100-175", "100-175", "100-175", "100-175", "100-175", "100-200",
"100-200", "100-200", "100-200", "100-200", "100-200", "100-200",
"100-200", "100-200", "100-200", "100-200", "100-200", "100-200",
"100-200", "100-200", "100-200", "100-200", "100-200", "100-200",
"100-200", "100-200", "100-200", "100-200", "100-200", "100-200",
"100-200", "100-200", "100-200", "100-200", "100-200", "200-400",
"200-400", "200-400", "200-400", "200-400", "200-400", "200-400",
"200-400", "200-400", "200-400", "200-400", "200-400", "200-400",
"200-400", "200-400", "200-400", "200-400", "200-400", "200-400",
"200-400", "200-400", "200-400", "200-400", "200-400", "200-400",
"200-400", "200-400", "200-400", "200-400", "200-400", "25-50",
"25-50", "25-50", "25-50", "25-50", "25-50", "25-50", "25-50",
"25-50", "25-50", "25-50", "25-50", "25-50", "25-50", "25-50",
"25-50", "25-50", "25-50", "25-50", "25-50", "25-50", "25-50",
"25-50", "25-50", "25-50", "25-50", "25-50", "25-50", "25-50",
"25-50", "400-1000", "400-1000", "400-1000", "400-1000", "400-1000",
"400-1000", "400-1000", "400-1000", "400-1000", "400-1000", "400-1000",
"400-1000", "400-1000", "400-1000", "400-1000", "400-1000", "400-1000",
"400-1000", "400-1000", "400-1000", "400-1000", "400-1000", "400-1000",
"400-1000", "400-1000", "400-1000", "400-1000", "400-1000", "400-1000",
"400-1000", "50-100", "50-100", "50-100", "50-100", "50-100",
"50-100", "50-100", "50-100", "50-100", "50-100", "50-100", "50-100",
"50-100", "50-100", "50-100", "50-100", "50-100", "50-100", "50-100",
"50-100", "50-100", "50-100", "50-100", "50-100", "50-100", "50-100",
"50-100", "50-100", "50-100", "50-100"), `max depth` = c(25,
25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 175, 175, 175, 175,
175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175,
175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175,
200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200,
200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200,
200, 200, 200, 200, 400, 400, 400, 400, 400, 400, 400, 400, 400,
400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
400, 400, 400, 400, 400, 400, 400, 400, 50, 50, 50, 50, 50, 50,
50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50,
50, 50, 50, 50, 50, 50, 50, 50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
100, 100, 100, 100)), row.names = c(NA, -240L), class = c("tbl_df",
"tbl", "data.frame"))