According to GIL wiki it states that
In CPython, the global interpreter lock, or GIL, is a mutex that prevents multiple native threads from executing Python bytecodes at once. This lock is necessary mainly because CPython's memory management is not thread-safe.
When multiple threads tries to do some operation on a shared variable at same time we need to synchronise the threads to avoid Race Conditions. We achieve this by acquiring a lock.
But since python uses GIL only one thread is allowed to execute python's byte code, so this problem should be never faced in case of python programs - is what I thought :( .But I saw an article about thread synchronisation in python where we have a code snippet that is causing race conditions. https://www.geeksforgeeks.org/multithreading-in-python-set-2-synchronization/
Can someone please explain me how this is possible?
Code
import threading
# global variable x
x = 0
def increment():
"""
function to increment global variable x
"""
global x
x += 1
def thread_task():
"""
task for thread
calls increment function 100000 times.
"""
for _ in range(100000):
increment()
def main_task():
global x
# setting global variable x as 0
x = 0
# creating threads
t1 = threading.Thread(target=thread_task)
t2 = threading.Thread(target=thread_task)
# start threads
t1.start()
t2.start()
# wait until threads finish their job
t1.join()
t2.join()
if __name__ == "__main__":
for i in range(10):
main_task()
print("Iteration {0}: x = {1}".format(i,x))
Output:
Iteration 0: x = 175005
Iteration 1: x = 200000
Iteration 2: x = 200000
Iteration 3: x = 169432
Iteration 4: x = 153316
Iteration 5: x = 200000
Iteration 6: x = 167322
Iteration 7: x = 200000
Iteration 8: x = 169917
Iteration 9: x = 153589