0

Let's assume i have the following dataframe with multiple lines

import numpy as np
import pandas as pd

data = [[152542,'201903','42','RES'],
[152542, '201904','30','RES'], 
[152541, '201901','25','COM'],
[152543, '201902','80','IND'],
[152541, '201902','35','COM'],
[152544,'201904','10','PUB']]

df = pd.DataFrame(data, columns=['ID','YEARMONTH', 'PRICE','CATEGORY'])
df

How can i transform the column YEARMONTH into multiple columns with the respective price value for each unique id like this:

ID 201901 201902 201903 201904 CATEGORY
152541 25 35 NULL NULL COM
152542 NULL NULL 42 30 RES
152543 NULL 80 NULL NULL IND
152544 NULL NULL NULL 10 PUB

Filling with null the values not found for that id without the price value for the respective month. Any suggestion is appreciated. Thanks.

0 Answers0