I want to use Pyspark to read in hundreds of csv files, create a single dataframe that is (roughly) the concatenation of all the csvs. Since each csv can fit in memory, but not more than one or two at a time, this seems like a good fit for Pyspark. My strategy is not working, and I think it is because I want to make a Pyspark dataframe in the kernel function of my map function resulting in an error:
# initiate spark session and other variables
sc = SparkSession.builder.master("local").appName("Test").config(
"spark.driver.bindAddress", "127.0.0.1").getOrCreate()
file_path_list = [path1, path2] ## list of string path variables
# make an rdd object so i can use .map:
rdd = sc.sparkContext.parallelize(file_path_list)
# make a kernel function for my future .map() application
def kernel_f(path):
df = sc.read.options(delimiter=",", header=True).csv(path)
return df
# apply .map
rdd2 = rdd.map(kernel_f)
# see first dataframe (so excited)
rdd2.take(2)[0].show(3)
this throws an error:
PicklingError: Could not serialize object: RuntimeError: It appears that you are attempting to reference SparkContext from a broadcast variable, action, or transformation. SparkContext can only be used on the driver, not in code that it run on workers. For more information, see SPARK-5063.
My next step (supposing no error had appeared) was to use a reduce step to concatenate all the members (dataframes with same schema) of that rdd2
It seems related to this post but I don't understand the answer.
Questions:
- I think this means is that since my
kernel_f
callssc.
methods, it is against the rules. Is that right? - I (think I) could use plain-old python (not pyspark) function
map
to apply thekernel_f
to myfile_path_list
, then use plain-oldfunctools.reduce
to concatenate all these into a single pyspark dataframe, but that doesn't seem to leverage pyspark much. Does this seem like a good route? - Can you teach me a good, ideally a "tied-for-best" way to do this?