1mo, frankly I do not know what kind of choicepoint is responsible. This is a notion far too low level to be of direct relevance. And there are better techniques to understand the problem, in particular failure slices.
2do, the problem here is called (universal) non-termination. But note how you found it: You got an answer and then only when demanding the next answer Prolog looped. This can be even worse, like looping only after the n-th answer. The easiest way to spot all kinds of non-termination is to just add false
to the query. If G_0
terminates universally also G_0, false
terminates (and fails).
3tio, yes there is. But first, try to understand why your original program looped. The best is to add some falsework into your program. By adding goals false
we obtain a failure-slice. And if we find such a slice that already does not terminate then also the original program does not terminate. (No further analysis required!1) Here is the one of relevance:
step([], L2, L2) :- false.
step([H1|T1], X, L2) :- step(T1, X, [H1|L2]), false.
reverse(X, Y) :- step(X, Y, []), false.
?- reverse(X, [1,2,3]), false.
loops.
So we need to understand only that visible part! As promised, there is now not a single choicepoint present.
Just look at the head of step/3
! There, only the first argument insists on some specific term, but the second and third do not insist on anything. Therefore the second and third argument cannot influence termination. They are termination neutral. And thus, only the first argument of reverse/2
will influence termination.
To fix this, we need to somehow get the second argument of reverse/2
into a relevant position in step
. The simplest way is to add another argument. And, if we are at it, we may realize that both arguments of reverse/2
are of the same length, thus:
step([], L2, L2, []).
step([H1|T1], X, L2, [_|Y]) :- step(T1, X, [H1|L2], Y).
reverse(X, Y) :- step(X, Y, [], Y).
?- reverse(X, [1,2,3]), false.
false.
?- reverse([1,2,3], Y), false.
false.
?- reverse(X,Y).
X = [], Y = []
; X = [_A], Y = [_A]
; X = [_A,_B], Y = [_B,_A]
; X = [_A,_B,_C], Y = [_C,_B,_A]
; ... .
4to, don't believe the tale of the green cut! They are so rare. Most good cuts are placed together with a guard that ensures that the cut is safe. See how your cut wreaked havoc:
?- X = [a], reverse(X,Y).
X = "a", Y = "a". % nice
?- reverse(X,Y), X = [a].
false, unexpected.
?- reverse(L,[]).
L = [].
?- L = [_|_], reverse(L,[]).
loops, unexpected.
So sometimes the program will fail incorrectly, and the looping is still present. Hardly an improvement.
1 Assuming that we use the pure monotonic subset of Prolog