Please consider the following:
My aim is to draw random survival times from a flexible parametric multi-state model fitted with flexsurvreg
(more specifically msfit.flexsurvreg
) and applying some hazard ratio (HR, in this example set to 0.2).
I found an example to generate random survival times using any hazard function here. This is also were I apply the HR.
Problem
With the actual data, I receive an error once the HR is below the value of 0.2: Error in uniroot((function(x) { : no sign change found in 1000 iterations
.
This does not happen in the reproducible example below.
Questions
Is there another, better way than the one below to draw random survival times while applying a HR?
Can someone indicate why the "no sign change" error may occur and how this can be fixed?
Any help is greatly appreciated!
Minimal reproducible example
# Load package
library(flexsurv)
#> Loading required package: survival
# Load data
data("bosms4")
# Define hazard ratio
hr <- 0.2
# Fit model (weibull)
crwei <- flexsurvreg(formula = Surv(years, status) ~ trans + shape(trans),
data = bosms3, dist = "weibull")
# Create transition matrix
Q <- rbind(c(NA,1,2),c(NA,NA,3), c(NA,NA,NA))
# Capture parameters
pars <- pars.fmsm(crwei, trans=Q, newdata=data.frame(trans=1:3))
# Code from https://eurekastatistics.com/generating-random-survival-times-from-any-hazard-function/ ----
inverse = function(fn, min_x, max_x){
# Returns the inverse of a function for a given range.
# E.g. inverse(sin, 0, pi/2)(sin(pi/4)) equals pi/4 because 0 <= pi/4 <= pi/2
fn_inv = function(y){
uniroot((function(x){fn(x) - y}), lower=min_x, upper=max_x)[1]$root
}
return(Vectorize(fn_inv))
}
integrate_from_0 = function(fn, t){
int_fn = function(t) integrate(fn, 0, t)
result = sapply(t, int_fn)
value = unlist(result["value",])
msg = unlist(result["message",])
value[which(msg != "OK")] = NA
return(value)
}
random_survival_times = function(hazard_fn, n, max_time=10000){
# Given a hazard function, returns n random time-to-event observations.
cumulative_density_fn = function(t) 1 - exp(-integrate_from_0(hazard_fn, t))
inverse_cumulative_density_fn = inverse(cumulative_density_fn, 0, max_time)
return(inverse_cumulative_density_fn(runif(n)))
}
# Run with data ----
random_survival_times(hazard_fn = function(t){crwei$dfns$h(t, pars[[1]][1], pars[[1]][2]) * hr}, n = 100)
#> Error in integrate(fn, 0, t): non-finite function value
# Adapt random_survival time function replacing 0 with 0.1 ----
random_survival_times <- function(hazard_fn, n, max_time=10000){
# Given a hazard function, returns n random time-to-event observations.
cumulative_density_fn = function(t) 1 - exp(-integrate_from_0(hazard_fn, t))
inverse_cumulative_density_fn = inverse(cumulative_density_fn, 0.1, max_time)
return(inverse_cumulative_density_fn(runif(n)))
}
# Run again with data ----
random_survival_times(hazard_fn = function(t){crwei$dfns$h(t, pars[[1]][1], pars[[1]][2]) * hr}, n = 100)
#> Error in uniroot((function(x) {: f() values at end points not of opposite sign
# Adapt inverse adding extendedInt = "yes" ----
inverse <- function(fn, min_x, max_x){
# Returns the inverse of a function for a given range.
# E.g. inverse(sin, 0, pi/2)(sin(pi/4)) equals pi/4 because 0 <= pi/4 <= pi/2
fn_inv <- function(y){
uniroot((function(x){fn(x) - y}), lower=min_x, upper=max_x,
extendInt = "yes" # extendInt added because of error on some distributions: "Error in uniroot((function(x) { : f() values at end points not of opposite sign. Solution found here: https://stackoverflow.com/questions/38961221/uniroot-solution-in-r
)[1]$root
}
return(Vectorize(fn_inv))
}
# Run again with data ----
res <- random_survival_times(hazard_fn = function(t){crwei$dfns$h(t, pars[[1]][1], pars[[1]][2]) * hr}, n = 100)
res[1:5]
#> [1] 1.074281 13.688663 30.896637 159.643827 15.805103
Created on 2022-10-18 with reprex v2.0.2