Memoized functions are functions which remember values they have found. Look in the doc center for some background on this in Mathematica, if necessary.
Suppose you have the following definition
f[0] = f[1] = 1
f[x_] := f[x] = f[x - 1] + f[x - 2]
in one of your packages. A user may load the package and start asking right away f[1000]. This will trigger a $RecursionLimit::reclim error message and abort. Even if the user then tries something smaller, say f[20], by now the definition of f is corrupt and the result is not good anymore.Of course the package developer might increase the recursion limit and warn the user, but my question is:
How can you improve the f definition so that if the user asks for f[1000] he/she gets the answer without any problem? I am interested in a way to trap the user input, analyze it and take whatever steps are necessary to evaluate f[1000].
I can easily imagine that one can change the recursion limit if the input is more than 255 (and then bring it back to the original level), but what I would really like to see is, if there is a way for the f to find out how many values it "knows" (fknownvalues) and accept any input <=fknownvalues+$RecursionLimit without problems or increase the $RecursionLimit if the input is higher.
Thank you for your help