There's a bunch of coroutine libraries for C++. Here's one from RethinkDB.
There's also mine header-only library, which is tailored to be used with callbacks. I've tried Boost coroutines but I don't use them yet because of the incompatibility with valgrind. My implementation uses ucontext.h
and works fine under valgrind so far.
With "standard" coroutines you have to jump thru some hoops to use them with callbacks. For example, here is how a working thread-safe (but leaking) Cherokee handler looks with Boost coroutines:
typedef coroutine<void()> coro_t;
auto lock = make_shared<std::mutex>();
coro_t* coro = new coro_t ([handler,buffer,&coro,lock](coro_t::caller_type& ca)->void {
p1: ca(); // Pass the control back in order for the `coro` to initialize.
coro_t* coro_ = coro; // Obtain a copy of the self-reference in order to call self from callbacks.
cherokee_buffer_add (buffer, "hi", 2); handler->sent += 2;
lock->lock(); // Prevents the thread from calling the coroutine while it still runs.
std::thread later ([coro_,lock]() {
//std::this_thread::sleep_for (std::chrono::milliseconds (400));
lock->lock(); // Wait for the coroutine to cede before resuming it.
(*coro_)(); // Continue from p2.
}); later.detach();
p2: ca(); // Relinquish control to `cherokee_handler_frople_step` (returning ret_eagain).
cherokee_buffer_add (buffer, ".", 1); handler->sent += 1;
});
(*coro)(); // Back to p1.
lock->unlock(); // Now the callback can run.
and here is how it looks with mine:
struct Coro: public glim::CBCoro<128*1024> {
cherokee_handler_frople_t* _handler; cherokee_buffer_t* _buffer;
Coro (cherokee_handler_frople_t *handler, cherokee_buffer_t* buffer): _handler (handler), _buffer (buffer) {}
virtual ~Coro() {}
virtual void run() override {
cherokee_buffer_add (_buffer, "hi", 2); _handler->sent += 2;
yieldForCallback ([&]() {
std::thread later ([this]() {
//std::this_thread::sleep_for (std::chrono::milliseconds (400));
invokeFromCallback();
}); later.detach();
});
cherokee_buffer_add_str (_buffer, "."); _handler->sent += 1;
}
};