For all columns in enrichr_genes
that are "None", I replace them with 0 before matching it against the column value of another data frame meth_all
.
enrichr_genes = enrichr_genes.fillna(0)
for col in enrichr_genes.itertuples():
if col == meth_all["Target"]:
print(col)
Traceback:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
/tmp/ipykernel_27/2393237721.py in <module>
1 for col in enrichr_genes.itertuples():
----> 2 if col == meth_all["Target"]:
3 print(col)
/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py in __nonzero__(self)
1536 def __nonzero__(self):
1537 raise ValueError(
-> 1538 f"The truth value of a {type(self).__name__} is ambiguous. "
1539 "Use a.empty, a.bool(), a.item(), a.any() or a.all()."
1540 )
ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
meth_all
example:
meth_all = pd.DataFrame([['ZNF529', 'ZNF382', 221.7682346300719],
['WT1', 'WIT1', 114.35710729484111],
['HOXB4', 'MIR10A', 100.56988297891884],
['ZNF275', 'ZNF81', 95.52091653099176],
['ZNF583', 'ZCCHC17', 94.95539553164043],
['ZNF275', 'EMD', 93.88332290413156],
['ZNF674', 'TAZ', 93.86801400448093],
['HMGB3', 'PDK3', 93.0093474028802],
['ZNF81', 'VBP1', 91.90313302398322]], dtype=object, columns=["TF", "Target", "Importance"])
enrichr_gene
example:
enrichr_gene = pd.DataFrame([['ADCY2', 'OPRM1', 'ADCY7', 'GNAI1', 'GNAI2', 'GNAO1', 'CREB1',
'PRKAR2B', 'PRKAR2A'],
['PRKAR2B', 'PRKAR2A', 'ADCY2', 'PRKACA', 'PRKACB', 'ADCY7', None, None,
None],
['ATP5A1', 'ATP5C1', 'CYCS', None, None, None, None, None, None],
['MTHFD2', 'MTR', 'TYMS', None, None, None, None, None, None],
['HPRT1', 'ADA', 'APRT', None, None, None, None, None, None],
['GOT1', 'GOT2', 'ASNS', None, None, None, None, None, None],
['PC', 'PDHA1', 'PKLR', 'ME1', 'PCK1', None, None, None, None],
['CYP27B1', 'CYP27C1', 'CYP24A1', 'VDR', 'GC', None, None, None, None],
['SHMT1', 'PHGDH', 'PSPH', None, None, None, None, None, None],
['FECH', 'QARS', 'UROD', 'HMBS', 'EPRS', 'EARS2', None, None, None]],
dtype=object)
I know the sample data might not be the most suitable for the question. Sorry!