Ok, lets start from the beginning. Ideal way to return variable-length buffer would be:
MyStruct my_func(int a) { MyStruct s; /* magic here */ return s; }
Unfortunately, this does not work since sizeof(MyStruct) is calculated on compile-time. Anything variable-length just do not fit inside a buffer whose size is calculated on compile-time. The thing to notice that this happens with every variable or type supported by c++, since they all support sizeof. C++ has just one thing that can handle runtime sizes of buffers:
MyStruct *ptr = new MyStruct[count];
So anything that is going to solve this problem is necessarily going to use the array version of new. This includes std::vector and other solutions proposed earlier. Notice that tricks like the placement new to a char array has exactly the same problem with sizeof. Variable-length buffers just needs heap and arrays. There is no way around that restriction, if you want to stay within c++. Further it requires more than one object! This is important. You cannot make variable-length object with c++. It's just impossible.
The nearest one to variable-length object that the c++ provides is "jumping from type to type". Each and every object does not need to be of same type, and you can on runtime manipulate objects of different types. But each part and each complete object still supports sizeof and their sizes are determined on compile-time. Only thing left for programmer is to choose which type you use.
So what's our solution to the problem? How do you create variable-length objects? std::string provides the answer. It needs to have more than one character inside and use the array alternative for heap allocation. But this is all handled by the stdlib and programmer do not need to care. Then you'll have a class that manipulates those std::strings. std::string can do it because it's actually 2 separate memory areas. The sizeof(std::string) does return a memory block whose size can be calculated on compile-time. But the actual variable-length data is in separate memory block allocated by the array version of new.
The array version of new has some restrictions on it's own. sizeof(a[0])==sizeof(a[1])
etc. First allocating an array, and then doing placement new for several objects of different types will go around this limitation.