I am (or was supposed to, at least) make a Dijkstra implementation, but upon reviewing what I've done it looks more like a breadth-first search. But I wonder if I have come across a way to kind of do both things at the same time?
Essentially by using an OOP approach I can perform a BFS that also preserves knowledge of the shortest weighted path, thereby eliminating the need to determine during the search process whether some node has a lower cost than its alternatives like Dijkstra does.
I've searched for clues as to why a more "pure" implementation of Dijkstra should be faster than this, most prominently the answers in these two threads:
What is difference between BFS and Dijkstra's algorithms when looking for shortest path?
Why use Dijkstra's Algorithm if Breadth First Search (BFS) can do the same thing faster?
I haven't seen anything that made me understand the question to what I'm wondering, though.
My approach is essentially this:
- Start at whatever node we require, this becomes a "path"
- Step out to each adjacent node, and each of these steps create a new path that we store in a path collection
- Every path contains an ordered list of which nodes it has visited from the starting node all the way to wherever it is, as well as the associated weight/cost
- Mark the "parent" path as closed (stop iterating on it)
- Select the first open path in the path collection and repeat the above
- When there are no more open paths, delete all paths that didn't make it to the destination node
- Compare the lengths and return the path with the lowest weight
I struggle to see where the performance difference between this and pure Dijkstra would come from. Dijkstra would still have to iterate over all possible paths, right? So I perform exactly the same number of steps with this implementation as if I change returnNextOpenPath()
(serving the function of a normal queue, just not implemented as one) to a more priority queue-looking returnShortestOpenPath()
.
There's presumably a marginal performance penalty at the end where I examine all the collected, non-destroyed paths before I can print a result instead of just popping from a queue - but aside from that, am I just not seeing where else my implementation would also be worse than "pure" Dijkstra?
I don't think it matters, but in case it does: The actual code I have for this is gigantic so my first instinct is to hold off on posting it for now, but here's a stripped down version of it.
class DijkstraNode:
def getNeighbors(self):
# returns a Dict of all adjacent nodes and their cost
def weightedDistanceToNeighbor(self, neighbor):
# returns the cost associated with traversing from current node to the chosen neighbor node
return int(self.getNeighbors()[neighbor])
class DijkstraEdge:
def __init__(self, startingNode: DijkstraNode, destinationNode: DijkstraNode)
self.start = startingNode
self.goal = destinationNode
def weightedLength(self):
return self.start.weightedDistanceToNeighbor(self.goal)
class DijkstraPath:
def __init__(self, startingNode: DijkstraNode, destinationNode: DijkstraNode):
self.visitedNodes: list[DjikstraNode] = [startingNode]
self.previousNode = self.start
self.edges: list[DijkstraEdge] = []
def addNode(self, node: DijkstraNode)
# if the node we're inspecting is new, add it to all the lists
if not node in self.visitedNodes:
self.edges.append(DijkstraEdge(self.prevNode, node))
self.visitedNodes.append(node)
self.prevNode = node
# if the node we just added above is our destination, stop iterating on this path
if node = self.goal:
self.closed = True
self.valid = True
class DijkstraTree:
def bruteforceAllPaths(self, startingNode: DijkstraNode, destinationNode: DijkstraNode):
self.pathlist = []
self.pathlist.append(DjikstraPath(startingNode, destinationNode))
cn: DjikstraNode
# iterate over all open paths
while self.hasOpenPaths():
currentPath = self.returnNextOpenPath()
neighbors: Dict = currentPath.lastNode().getNeighbors()
for c in neighbors:
cn = self.returnNode(c)
# copy the current path
tmpPath = deepcopy(currentPath)
# add the child node onto the newly made path
tmpPath.addNode(cn)
# add the new path to pathlist
if tmpPath.isOpen() or tmpPath.isValid():
self.pathlist.append(tmpPath)
# then we close the parent path
currentPath.close()