New to the Keras model implementation and despite looking for answers: https://stackoverflow.com/questions/60991253/invalidargumenterror-input-must-be-a-vector-got-shape https://stackoverflow.com/questions/41736677/how-could-keras-model-predict-only-one-sample
But still couldnt make it work :(
I successfully trained my Keras model (words embeddings using "https://tfhub.dev/google/universal-sentence-encoder/4")
But when I try to predict with:
test_text = ["We are looking for Data Scientists"]
test_text = np.array(test_text , dtype=object)[:, np.newaxis]
predicts = model.predict(test_text , batch_size=32)
predicts
But I get the following error:
InvalidArgumentError Traceback (most recent call last)
<ipython-input-150-078cff510ad4> in <module>
----> 1 predicts = model.predict(test_text, batch_size=32)
2
3 predicts
1 frames
/usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/execute.py in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name)
53 ctx.ensure_initialized()
54 tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
---> 55 inputs, attrs, num_outputs)
56 except core._NotOkStatusException as e:
57 if name is not None:
InvalidArgumentError: Graph execution error:
input must be a vector, got shape: []
[[{{node text_preprocessor/tokenize/StringSplit/StringSplit}}]] [Op:__inference_predict_function_838262]
Below the model summary and the batch input shape required - but really dont get it to work :(
Any HELP more than welcome!!!
Thanks
>> model.summary()
Model: "model"
_________________________________________________________________
Layer (type) Output Shape Param #
=
input_18 (InputLayer) \[(None, 1)\] 0
lambda_14 (Lambda) (None, 512) 0
dense_1 (Dense) (None, 256) 131328
dense_2 (Dense) (None, 788) 202516
=================================================================
Total params: 333,844
Trainable params: 333,844
Non-trainable params: 0
config = model.get_config() # Returns pretty much every information about your model
print(config\["layers"\]\[0\]\["config"\]\["batch_input_shape"\]) # returns a tuple of width, height and channels
(None, 1)
Looking at some answers like Keras model input shape wrong
I also tried to reshape like that
predicts = model.predict(test_text.reshape((1, -1)))
predicts
But I get exactly the same error than previously