I'm trying to merge two dataframes: 'new_df' and 'df3'. new_df contains years and months, and df3 contains years, months and other columns.
I've cast most of the columns as object, and tried to merge them both. The merge 'works' as doesn't return an error, but my final datafram is all empty, only the year and month columns are correct.
new_df
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 119 entries, 0 to 118
Data columns (total 3 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 date_test 119 non-null datetime64[ns]
1 year 119 non-null object
2 month 119 non-null object
dtypes: datetime64[ns](1), object(2)
df3
<class 'pandas.core.frame.DataFrame'>
Int64Index: 191 entries, 53 to 1297
Data columns (total 11 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 case_number 191 non-null object
1 date 191 non-null object
2 year 191 non-null object
3 country 191 non-null object
4 area 191 non-null object
5 location 191 non-null object
6 activity 191 non-null object
7 fatal_y_n 182 non-null object
8 time 172 non-null object
9 species 103 non-null object
10 month 190 non-null object
dtypes: object(11)
I've tried this line of code:
df_joined = pd.merge(left=new_df, right=df3, how='left', on=['year','month'])
I was expecting a table with only filled fields in all columns, instead i got the table: