I've been trying to look over the Konva shape library and haven't found a stroke reapeating pattern method. I've been trying to look for a way to implement https://stackoverflow.com/a/32323610/20557085 into the shape's sceneFunc, but ended up with a static version that keeps itself in the top right corner of the canvas at all times, even if the canvas/camera is moved/dragged.
The end-goal would be to have a image that repeats itself following a line's bezier curve of points, that I can change the width of.
The question would be if there is something I am missing that is already a part of Konva, or if I should continue to trial my way through the sceneFunc?
The class component used in my attempt, that ended up static:
import React, { Component } from 'react';
import { createRoot } from 'react-dom/client';
import { Stage, Layer, Image, Shape } from 'react-konva';
var PI = Math.PI;
class URLImageStroke extends React.Component {
constructor(props) {
super(props)
this.state = {
image: null,
points: [{ x: 0, y: 0 }, { x: 100, y: 100 }, { x: 150, y: 50 }, { x: 200, y: 200 }]
};
}
componentDidMount() {
this.loadImage();
this.getPoints()
}
loadImage() {
// save to "this" to remove "load" handler on unmount
this.image = new window.Image();
this.image.src = this.props.src;
this.image.addEventListener('progress', (e) => console.log(e))
this.image.addEventListener('load', this.handleLoad);
}
handleLoad = () => {
this.setState({
image: this.image,
});
};
getPoints = () => {
let points = [];
//for (let i = 0; this.state.points.length > i; i++) {
const s = this.state.points[0];
const c1 = this.state.points[1];
const c2 = this.state.points[2];
const e = this.state.points[3];
for (var t = 0; t <= 100; t += 0.25) {
var T = t / 100;
// plot a point on the curve
var pos = getCubicBezierXYatT(s, c1, c2, e, T);
// calculate the tangent angle of the curve at that point
var tx = bezierTangent(s.x, c1.x, c2.x, e.x, T);
var ty = bezierTangent(s.y, c1.y, c2.y, e.y, T);
var a = Math.atan2(ty, tx) - PI / 2;
// save the x/y position of the point and the tangent angle
// in the points array
points.push({
x: pos.x,
y: pos.y,
angle: a
});
}
this.setState({
points: points
});
}
render() {
return (
<Shape
x={50}
y={50}
width={this.props?.width}
height={this.props?.height}
image={this.state.image}
points={this.state?.points}
sceneFunc={(ctx, shape) => {
const img = shape.attrs.image;
if (!img) {
console.log("no image")
return;
}
const points = shape.attrs.points;
if (!points) {
console.log("no points")
return;
}
// Note: increase the lineWidth if
// the gradient has noticable gaps
ctx.lineWidth = 8;
ctx.strokeStyle = 'skyblue';
let sliceCount = 0;
// draw a gradient-stroked line tangent to each point on the curve
for (let i = 0; i < points.length; i++) {
let p = points[i];
ctx.translate(p.x, p.y);
ctx.rotate(p.angle - PI / 2);
// draw multiple times to fill gaps on outside of rope slices
ctx.drawImage(img, sliceCount, 0, 1, img.height, 0, 0, 1, img.height);
ctx.drawImage(img, sliceCount, 0, 1, img.height, 0, 0, 1, img.height);
ctx.drawImage(img, sliceCount, 0, 1, img.height, 0, 0, 1, img.height);
ctx.setTransform(1, 0, 0, 1, 0, 0);
++sliceCount;
if (sliceCount > (img.width - 1)) { sliceCount = 0; }
}
//ctx.strokeShape(this);
}
}
/>
);
}
}
//////////////////////////////////////////
// helper functions
//////////////////////////////////////////
// calculate one XY point along Cubic Bezier at interval T
// (where T==0.00 at the start of the curve and T==1.00 at the end)
function getCubicBezierXYatT(startPt, controlPt1, controlPt2, endPt, T) {
var x = CubicN(T, startPt.x, controlPt1.x, controlPt2.x, endPt.x);
var y = CubicN(T, startPt.y, controlPt1.y, controlPt2.y, endPt.y);
return ({ x: x, y: y });
}
// cubic helper formula at T distance
function CubicN(T, a, b, c, d) {
var t2 = T * T;
var t3 = t2 * T;
return a + (-a * 3 + T * (3 * a - a * T)) * T
+ (3 * b + T * (-6 * b + b * 3 * T)) * T
+ (c * 3 - c * 3 * T) * t2
+ d * t3;
}
// calculate the tangent angle at interval T on the curve
function bezierTangent(a, b, c, d, t) {
return (3 * t * t * (-a + 3 * b - 3 * c + d) + 6 * t * (a - 2 * b + c) + 3 * (-a + b));
};
export default URLImageStroke;