You can use Amazon Textract to help you solve this. It allows you to extract key value pairs and tabular data. Here is how you can use it:
from textractor import Textractor
from textractor.data.constants import TextractFeatures
extractor = Textractor(profile_name="default")
document = extractor.analyze_document(
file_source="./n3Zm0.png",
features=[TextractFeatures.TABLES, TextractFeatures.FORMS],
)
document.visualize(with_words=False)

You can export the table data to pandas for example:
document.tables[0].to_pandas()
0 1 2 3 4
0 005 XX 1241 2156-001 Rostskyddsvätska Rust-prev. fluid
1 004 96 2126 2039-130 M6M 30 - -10 spec Nut
2 003 96 2122 2054-788 Pinnskruv M30x300 -10.9 S Stud
3 002 96 488 9764-015 Bricka Washer
4 001 X 387 4402-002 Styrpinne Guide pin
5 Item No. Article No. Moteriol,type,etc Dimensions Nome of item
and you can get the list of key value pairs here:
document.key_values
[M6M : 30 -10 - spec,
Pinnskruv : M30x300 -10.9 S,
Article No. : ,
Dimensions : ,
Nome of item : ,
Moteriol,type,etc : ,
Item No. : ,
Part of : Pack spec,
Tolerances angles for and corner threads radii according chanfers, to : HS 2002 0020.,
Scote : 1:2,
Specification : ,
Weight kg : 225,
Reg : ,
Other not indicated tol. : O,
Description (EngLish) : Slewing rim yard mount.,
Accepted by qual control : ,
Accepted for prod by : GK,
Prod.group : 355,
Drawn by : A Sedin,
Description (own Language) : Vändkranslager varvsmont.,
Design checked by : ,
Type design/group : ,
Rev ind : ,
Year Week : 93 26,
Sheet : 1,
Iss by Dept : 3451,
Drowing checked by : SON,
No of sh. : 1,
Year Week : 4,
Appd : ]