Why is the analog read rate seemingly slow (46 ksamples/s) when it should be fast (250 ksamples/s) for my Adafruit Trinket M0? See this simple Arduino code for details; why is PointCount only 46?
//TrinketReadRateTest
//27Nov2022
//Running on Adafruit Trinket M0, SAMD21
//Measures read times of analog reads on Trinket M0
//nothing at all connected to the Trinket
//according to the settings in this wiring.c file lines 160-173, samples per second should be = 250,000:
//C:\Users\<MyUserName>\AppData\Local\Arduino15\packages\adafruit\hardware\samd\1.7.11\cores\arduino\wiring.c
//in this loop, every PointCount is 2 samples, so in 2 millisecs, number of PointCounts should be:
//(.002 secs)(250000 samples/sec)(PointCounts/ 2 samples) = 250
//however, this routine gives a value of 46 WHY?
//if line 170 prescaler is set to DIV16 instead of DIV32, PointCounts gets to 66 (accuracy ???) so this wiring.c is being loaded
#define INPUT1 A3 //ATSAMD21G PA04
#define INPUT2 A4 //ATSAMD21G PA05
unsigned int Input1[1000];
unsigned int Input2[1000];
unsigned int PointCount = 0;
void setup() {
pinMode(INPUT1, INPUT);
pinMode(INPUT2, INPUT);
}
void loop() {
PointCount = 0;
unsigned long StartTime = micros();
do {
Input1[PointCount] = analogRead(INPUT1);
Input2[PointCount] = analogRead(INPUT2);
PointCount++;
} while (micros() - StartTime < 2000); //read 2 millisecs of data points as fast as they come
Serial.begin(9600); //keep serial off during data reads to avoid the question...
delay(1000);
Serial.println(PointCount);
Serial.end();
delay(1000);
}
I tried reading analog samples as fast as they would come. I expected to receive samples at a rate of 250000 per second. What actually resulted was a rate of 46000 samples per second.
Added 28Nov: the wiring.c file is not easy to find. If you want it:
- download the tar.bz2 file: https://adafruit.github.io/arduino-board-index/boards/adafruit-samd-1.7.11.tar.bz2
- extract the tar file using 7-zip or whatever
- goto cores\arduino\wiring.c
Here are the relevant lines of wiring.c:
//set to 1/(1/(48000000/32) * 6) = 250000 SPS
while(GCLK->STATUS.reg & GCLK_STATUS_SYNCBUSY);
GCLK->CLKCTRL.reg = GCLK_CLKCTRL_ID( GCM_ADC ) | // Generic Clock ADC
GCLK_CLKCTRL_GEN_GCLK0 | // Generic Clock Generator 0 is source
GCLK_CLKCTRL_CLKEN ;
while( ADC->STATUS.bit.SYNCBUSY == 1 ); // Wait for synchronization of registers between the clock domains
ADC->CTRLB.reg = ADC_CTRLB_PRESCALER_DIV32 | // Divide Clock by 32.
ADC_CTRLB_RESSEL_10BIT; // 10 bits resolution as default
ADC->SAMPCTRL.reg = 5; // Sampling Time Length
Adding this additional question 8Dec2022:
wiring.analog.c (in same folder as wiring.c) executes the analog routines. Line 369 of wiring.analog.c says the same thing that the SAMD21 data sheet says: "The first conversion after the reference is changed must not be used."
In lines 371-394, the analogRead routine for SAMD21, two reads are always made; the first to account for the statement above. But why do two reads for every analogRead? The analog reference is not changed with every read and is set prior to any reads. So why not just do one conversion after the reference is set? That way, there only needs to be one conversion per analogRead.
I moved the first conversion routine to the very end of analogReference. It speeds things up to PointCount = 79. Is this a problem? It does not seem to reduce accuracy.