I'm following the code presented here:
Compute homography for a virtual camera with opencv
As a note, I made a tiny modification to the code: in the translation matrix, I'm left-multiplying the first 3 rows of the last column by -R to get the translation in the global frame. I also changed the translation matrix definition to use "-dist" because in the global frame, movement toward the camera would be in the negative z direction.
When I turn the X rotation to 0, I get a weird... aliased version of the loaded image that appears ABOVE the horizon line, where there should be nothing.
My question:
Why? Is this just a weird artifact of how the homography is calculated? How can I get rid of it? I know for x=0 (in the presented code) I can just ignore/erase anything above the horizon line, but my use case the x rotation might be -10 to 10 degrees or so - how can I calculate where the horizon line would be in those cases (so I can ignore image data above it) - or is there a mathematical solution the computing the homography that will bypass this problem all together?
Thanks!
EDIT: Adding in code/image in question:
import cv2
import numpy as np
rotXdeg = 90
rotYdeg = 90
rotZdeg = 90
f = 500
dist = 500
def onRotXChange(val):
global rotXdeg
rotXdeg = val
def onRotYChange(val):
global rotYdeg
rotYdeg = val
def onRotZChange(val):
global rotZdeg
rotZdeg = val
def onFchange(val):
global f
f=val
def onDistChange(val):
global dist
dist=val
if __name__ == '__main__':
#Read input image, and create output image
src = cv2.imread('/path/to/image.jpg')
dst = np.ndarray(shape=src.shape,dtype=src.dtype)
#Create user interface with trackbars that will allow to modify the parameters of the transformation
wndname1 = "Source:"
wndname2 = "WarpPerspective: "
cv2.namedWindow(wndname1, 1)
cv2.namedWindow(wndname2, 1)
cv2.createTrackbar("Rotation X", wndname2, rotXdeg, 180, onRotXChange)
cv2.createTrackbar("Rotation Y", wndname2, rotYdeg, 180, onRotYChange)
cv2.createTrackbar("Rotation Z", wndname2, rotZdeg, 180, onRotZChange)
cv2.createTrackbar("f", wndname2, f, 2000, onFchange)
cv2.createTrackbar("Distance", wndname2, dist, 2000, onDistChange)
#Show original image
cv2.imshow(wndname1, src)
h , w = src.shape[:2]
while True:
rotX = (rotXdeg - 90)*np.pi/180
rotY = (rotYdeg - 90)*np.pi/180
rotZ = (rotZdeg - 90)*np.pi/180
#Projection 2D -> 3D matrix
A1= np.matrix([[1, 0, -w/2],
[0, 1, -h/2],
[0, 0, 0 ],
[0, 0, 1 ]])
# Rotation matrices around the X,Y,Z axis
RX = np.matrix([[1, 0, 0, 0],
[0,np.cos(rotX),-np.sin(rotX), 0],
[0,np.sin(rotX),np.cos(rotX) , 0],
[0, 0, 0, 1]])
RY = np.matrix([[ np.cos(rotY), 0, np.sin(rotY), 0],
[ 0, 1, 0, 0],
[ -np.sin(rotY), 0, np.cos(rotY), 0],
[ 0, 0, 0, 1]])
RZ = np.matrix([[ np.cos(rotZ), -np.sin(rotZ), 0, 0],
[ np.sin(rotZ), np.cos(rotZ), 0, 0],
[ 0, 0, 1, 0],
[ 0, 0, 0, 1]])
#Composed rotation matrix with (RX,RY,RZ)
R = RX * RY * RZ
#Translation matrix on the Z axis change dist will change the height
T = np.matrix([[1,0,0,0],
[0,1,0,0],
[0,0,1,-dist],
[0,0,0,1]])
extractT = T[:3, 3:4]
solveT = -R[:3, :3]@extractT
T[:3, 3:4] = solveT
#Camera Intrisecs matrix 3D -> 2D
A2= np.matrix([[f, 0, w/2,0],
[0, f, h/2,0],
[0, 0, 1,0]])
# Final and overall transformation matrix
H = A2 * (T * (R * A1))
# Apply matrix transformation
cv2.warpPerspective(src, H, (w, h), dst, cv2.INTER_CUBIC)
#Show the image
cv2.imshow(wndname2, dst)
if (cv2.waitKey(1) == ord('q')):
break
Image: