I'm trying to implement an interpreter for the lambda calculus that has constant intergers and supports the addition operation. The interpreter should use the call-by-value small-step operational semantics. So I've implemented a step
that should be able to reduce a lambda term by one step. However, the stepper is losing the surrounding program of the reduced subterm when reduced.
This is my implementation in F#:
type Exp =
| Cst of int
| Var of string
| Abs of string * Exp
| App of Exp * Exp
| Arith of Oper * Exp * Exp
and Oper =
Plus
and the stepper looks like this:
let rec step (exp : Exp) (env : Map<string, Exp>) : Exp =
match exp with
| Cst _ | Abs(_) -> exp
| Var x ->
match Map.tryFind x env with
| Some v -> v
| None -> failwith "Unbound variable"
| App(e1, e2) ->
match step e1 env with
| Abs(x, e) ->
let newEnv = Map.add x (step e2 env) env
step e newEnv
| e1' -> failwithf "%A is not a lambda abstraction" e1'
| Arith(Plus, Cst a, Cst b) -> Cst (a + b)
| Arith(Plus, e1, Cst b) -> Arith(Plus, step e1 env, Cst b)
| Arith(Plus, Cst a, e2) -> Arith(Plus, Cst a, step e2 env)
| Arith(Plus, a, b) -> Arith(Plus, step a env, step b env)
So, given the following example of a program (\x.(\y.y x) 21 + 21) \x.x + 1
App
(Abs
("x", App (Abs ("y", App (Var "y", Var "x")), Arith (Plus, Cst 21, Cst 21))),
Abs ("x", Arith (Plus, Var "x", Cst 1)))
I expect the step
function to only reduce the 21 + 21
while keeping the rest of the program i.e. I expect the following output after one step (\x.(\y.y x) 42) \x.x + 1
. However, I'm not able to retain the surrounding code around the Cst 42
. How should I modify the program such that it reduction only steps once while maintaining the rest of the program?