The below code has two functions that does the same thing: checks to see if the line between two points intersects with a circle.
from line_profiler import LineProfiler
from math import sqrt
import numpy as np
class Point:
x: float
y: float
def __init__(self, x: float, y: float):
self.x = x
self.y = y
def __repr__(self):
return f"Point(x={self.x}, y={self.y})"
class Circle:
ctr: Point
r: float
def __init__(self, ctr: Point, r: float):
self.ctr = ctr
self.r = r
def __repr__(self):
return f"Circle(r={self.r}, ctr={self.ctr})"
def loop(p1: Point, p2: Point, circles: list[Circle]):
m = (p1.y - p2.y) / (p1.x - p2.x)
n = p1.y - m * p1.x
max_x = max(p1.x, p2.x)
min_x = min(p1.x, p2.x)
for circle in circles:
if sqrt((circle.ctr.x - p1.x) ** 2 + (circle.ctr.y - p1.y) ** 2) < circle.r \
or sqrt((circle.ctr.x - p2.x) ** 2 + (circle.ctr.y - p2.y) ** 2) < circle.r:
return False
a = m ** 2 + 1
b = 2 * (m * n - m * circle.ctr.y - circle.ctr.x)
c = circle.ctr.x ** 2 + circle.ctr.y ** 2 + n ** 2 - circle.r ** 2 - 2 * n * circle.ctr.y
# compute the intersection points
discriminant = b ** 2 - 4 * a * c
if discriminant <= 0:
# no real roots, the line does not intersect the circle
continue
# two real roots, the line intersects the circle at two points
x1 = (-b + sqrt(discriminant)) / (2 * a)
x2 = (-b - sqrt(discriminant)) / (2 * a)
# check if both points in range
first = min_x <= x1 <= max_x
second = min_x <= x2 <= max_x
if first and second:
return False
return True
def vectorized(p1: Point, p2: Point, circles):
m = (p1.y - p2.y) / (p1.x - p2.x)
n = p1.y - m * p1.x
max_x = max(p1.x, p2.x)
min_x = min(p1.x, p2.x)
circle_ctr_x = circles['x']
circle_ctr_y = circles['y']
circle_radius = circles['r']
# Pt 1 inside circle
if np.any(np.sqrt((circle_ctr_x - p1.x) ** 2 + (circle_ctr_y - p1.y) ** 2) < circle_radius):
return False
# Pt 2 inside circle
if np.any(np.sqrt((circle_ctr_x - p2.x) ** 2 + (circle_ctr_y - p2.y) ** 2) < circle_radius):
return False
# Line intersects with circle in range
a = m ** 2 + 1
b = 2 * (m * n - m * circle_ctr_y - circle_ctr_x)
c = circle_ctr_x ** 2 + circle_ctr_y ** 2 + n ** 2 - circle_radius ** 2 - 2 * n * circle_ctr_y
# compute the intersection points
discriminant = b**2 - 4*a*c
discriminant_bigger_than_zero = discriminant > 0
discriminant = discriminant[discriminant_bigger_than_zero]
if discriminant.size == 0:
return True
b = b[discriminant_bigger_than_zero]
# two real roots, the line intersects the circle at two points
x1 = (-b + np.sqrt(discriminant)) / (2 * a)
x2 = (-b - np.sqrt(discriminant)) / (2 * a)
# check if both points in range
in_range = (min_x <= x1) & (x1 <= max_x) & (min_x <= x2) & (x2 <= max_x)
return not np.any(in_range)
a = Point(x=-2.47496075130008, y=1.3609840363748935)
b = Point(x=3.4637947060471084, y=-3.7779123453298817)
c = [Circle(r=1.2587063082677084, ctr=Point(x=3.618533781361757, y=2.179925931180058)), Circle(r=0.7625751871124099, ctr=Point(x=-0.3173290200183132, y=4.256206636932641)), Circle(r=0.4926043225930364, ctr=Point(x=-4.626312261120341, y=-1.5754603504419196)), Circle(r=0.6026364956540792, ctr=Point(x=3.775240278691819, y=1.7381168262343072)), Circle(r=1.2804597877349562, ctr=Point(x=4.403273380178893, y=-1.6890127555343681)), Circle(r=1.1562415624767421, ctr=Point(x=-1.0675000352105801, y=-0.23952113329203994)), Circle(r=1.112718432321835, ctr=Point(x=2.500137075066017, y=-2.77748519509295)), Circle(r=0.979889574640609, ctr=Point(x=4.494971251199753, y=-1.0530995423779388)), Circle(r=0.7817624050358268, ctr=Point(x=3.2419454348696544, y=4.3303373486692465)), Circle(r=1.0271176198616367, ctr=Point(x=-0.9740272820753071, y=-4.282195116754338)), Circle(r=1.1585218836700681, ctr=Point(x=-0.42096876790888915, y=2.135161027254492)), Circle(r=1.0242603387003988, ctr=Point(x=2.2617850544260767, y=-4.59942951839469)), Circle(r=1.5704233297828027, ctr=Point(x=-1.1182365440831088, y=4.2411408333943506)), Circle(r=0.37137272043983655, ctr=Point(x=3.280499587987774, y=-4.87871834733383)), Circle(r=1.1829610109115543, ctr=Point(x=-0.27755604766113606, y=-3.68429580935016)), Circle(r=1.0993567600839198, ctr=Point(x=0.23602306761027925, y=0.47530122196024704)), Circle(r=1.3865045367147553, ctr=Point(x=-2.537565761732492, y=4.719766182202855)), Circle(r=0.9492796511909753, ctr=Point(x=-3.7047245796551973, y=-2.501817905967274)), Circle(r=0.9866916911482386, ctr=Point(x=1.3021813533479742, y=4.754952371169189)), Circle(r=0.9053004331885084, ctr=Point(x=-3.4912157984801784, y=-0.5269727600532836)), Circle(r=1.3058987272565075, ctr=Point(x=-1.6983878085276427, y=-2.2910189455221053)), Circle(r=0.5342716756987732, ctr=Point(x=4.948676886704507, y=-1.2467089784975183)), Circle(r=1.0603926633240575, ctr=Point(x=-4.390462974765324, y=0.785568745976325)), Circle(r=0.3448422804513971, ctr=Point(x=-1.6459756952994697, y=2.7608629057950362)), Circle(r=0.8521457455807724, ctr=Point(x=-4.503217369041699, y=3.93796926957188)), Circle(r=0.602438849989669, ctr=Point(x=-2.0703406576157493, y=0.6142570312870999)), Circle(r=0.6453692950682722, ctr=Point(x=-0.14802220452893144, y=4.08189682338989)), Circle(r=0.6983361689325062, ctr=Point(x=0.09362196694661651, y=-1.0953438275586391)), Circle(r=1.880331563921456, ctr=Point(x=0.23481661751521776, y=-4.09217120864087)), Circle(r=0.5766225363413416, ctr=Point(x=3.149434524126505, y=-4.639582956406762)), Circle(r=0.6177559628867022, ctr=Point(x=-1.6758918144661683, y=-0.7954935787503492)), Circle(r=0.7347952666955615, ctr=Point(x=-3.1907522890427575, y=0.7048509241855683)), Circle(r=1.2795003337464894, ctr=Point(x=-1.777244415863577, y=2.936422879898364)), Circle(r=0.9181024765780231, ctr=Point(x=4.212544425778317, y=-1.953546993038261)), Circle(r=1.7681384709020282, ctr=Point(x=-1.3702722387909405, y=-1.7013020424154368)), Circle(r=0.5420789771729688, ctr=Point(x=4.063803796292818, y=-3.7159871611415065)), Circle(r=1.3863651881788939, ctr=Point(x=0.7685002210812408, y=-3.994230705171357)), Circle(r=0.5739750223225826, ctr=Point(x=0.08779554290638258, y=4.879912451441914)), Circle(r=1.2019825386919343, ctr=Point(x=-4.206623233886995, y=-1.1617382464768689))]
circle_dt = np.dtype('float,float,float')
circle_dt.names = ['x', 'y', 'r']
np_c = np.array([(x.ctr.x, x.ctr.y, x.r) for x in c], dtype=circle_dt)
lp1 = LineProfiler()
loop_wrapper = lp1(loop)
loop_wrapper(a, b, c)
lp1.print_stats()
lp2 = LineProfiler()
vectorized_wrapper = lp2(vectorized)
vectorized_wrapper(a, b, np_c)
lp2.print_stats()
One implementation is regular for loop implementation, and the other is vectorized implementation with numpy. From my small knowledge of vectorization, I would have guessed that the vectorized function would yield better result, but as you can see below that is not the case:
Total time: 4.36e-05 s
Function: loop at line 31
Line # Hits Time Per Hit % Time Line Contents
==============================================================
31 def loop(p1: Point, p2: Point, circles: list[Circle]):
32 1 9.0 9.0 2.1 m = (p1.y - p2.y) / (p1.x - p2.x)
33 1 5.0 5.0 1.1 n = p1.y - m * p1.x
34
35 1 19.0 19.0 4.4 max_x = max(p1.x, p2.x)
36 1 5.0 5.0 1.1 min_x = min(p1.x, p2.x)
37
38 6 30.0 5.0 6.9 for circle in circles:
39 6 73.0 12.2 16.7 if sqrt((circle.ctr.x - p1.x) ** 2 + (circle.ctr.y - p1.y) ** 2) < circle.r \
40 6 62.0 10.3 14.2 or sqrt((circle.ctr.x - p2.x) ** 2 + (circle.ctr.y - p2.y) ** 2) < circle.r:
41 return False
42
43 6 29.0 4.8 6.7 a = m ** 2 + 1
44 6 32.0 5.3 7.3 b = 2 * (m * n - m * circle.ctr.y - circle.ctr.x)
45 6 82.0 13.7 18.8 c = circle.ctr.x ** 2 + circle.ctr.y ** 2 + n ** 2 - circle.r ** 2 - 2 * n * circle.ctr.y
46
47 # compute the intersection points
48 6 33.0 5.5 7.6 discriminant = b ** 2 - 4 * a * c
49 5 11.0 2.2 2.5 if discriminant <= 0:
50 # no real roots, the line does not intersect the circle
51 5 22.0 4.4 5.0 continue
52
53 # two real roots, the line intersects the circle at two points
54 1 7.0 7.0 1.6 x1 = (-b + sqrt(discriminant)) / (2 * a)
55 1 4.0 4.0 0.9 x2 = (-b - sqrt(discriminant)) / (2 * a)
56
57 # check if one point in range
58 1 5.0 5.0 1.1 first = min_x < x1 < max_x
59 1 3.0 3.0 0.7 second = min_x < x2 < max_x
60 1 2.0 2.0 0.5 if first and second:
61 1 3.0 3.0 0.7 return False
62
63 return True
Total time: 0.0001534 s
Function: vectorized at line 66
Line # Hits Time Per Hit % Time Line Contents
==============================================================
66 def vectorized(p1: Point, p2: Point, circles):
67 1 10.0 10.0 0.7 m = (p1.y - p2.y) / (p1.x - p2.x)
68 1 5.0 5.0 0.3 n = p1.y - m * p1.x
69
70 1 7.0 7.0 0.5 max_x = max(p1.x, p2.x)
71 1 4.0 4.0 0.3 min_x = min(p1.x, p2.x)
72
73 1 10.0 10.0 0.7 circle_ctr_x = circles['x']
74 1 3.0 3.0 0.2 circle_ctr_y = circles['y']
75 1 3.0 3.0 0.2 circle_radius = circles['r']
76
77 # Pt 1 inside circle
78 1 652.0 652.0 42.5 if np.any(np.sqrt((circle_ctr_x - p1.x) ** 2 + (circle_ctr_y - p1.y) ** 2) < circle_radius):
79 return False
80 # Pt 2 inside circle
81 1 161.0 161.0 10.5 if np.any(np.sqrt((circle_ctr_x - p2.x) ** 2 + (circle_ctr_y - p2.y) ** 2) < circle_radius):
82 return False
83 # Line intersects with circle in range
84 1 13.0 13.0 0.8 a = m ** 2 + 1
85 1 120.0 120.0 7.8 b = 2 * (m * n - m * circle_ctr_y - circle_ctr_x)
86 1 77.0 77.0 5.0 c = circle_ctr_x ** 2 + circle_ctr_y ** 2 + n ** 2 - circle_radius ** 2 - 2 * n * circle_ctr_y
87
88 # compute the intersection points
89 1 25.0 25.0 1.6 discriminant = b**2 - 4*a*c
90 1 46.0 46.0 3.0 discriminant_bigger_than_zero = discriminant > 0
91 1 56.0 56.0 3.7 discriminant = discriminant[discriminant_bigger_than_zero]
92
93 1 6.0 6.0 0.4 if discriminant.size == 0:
94 return True
95
96 1 12.0 12.0 0.8 b = b[discriminant_bigger_than_zero]
97
98 # two real roots, the line intersects the circle at two points
99 1 77.0 77.0 5.0 x1 = (-b + np.sqrt(discriminant)) / (2 * a)
100 1 28.0 28.0 1.8 x2 = (-b - np.sqrt(discriminant)) / (2 * a)
101
102 # check if both points in range
103 1 96.0 96.0 6.3 in_range = (min_x <= x1) & (x1 <= max_x) & (min_x <= x2) & (x2 <= max_x)
104 1 123.0 123.0 8.0 return not np.any(in_range)
For some reason the non vectorized function runs faster.
My simple guess is that it is because the vectorized function runs over the whole array every time and the non vectorized one stops in the middle when it find a circle intersections.
So my questions are:
- Is there a numpy function which doesn't iterate over the whole array but stops when the results are false?
- What is the reason the vectorized function takes longer to run?
- Any general optimization suggestions would be appreciated