I have this class:
template<typename T, size_t N>
class Array {
private:
T array[N];
public:
template <typename... InitValues>
constexpr Array(InitValues... init_values)
: array{ init_values... } {}
[[nodiscard]]
consteval int len() const noexcept { return sizeof(array) / sizeof(T); }
}
I would like to know, for such a simple member function, when I should provide the necessary ref-qualified
overloads.
With the actual code, I can compile and run the following code:
constexpr collections::Array a = collections::Array<long, 5>{1L, 2L, 3L};
SECTION("length of the array") {
REQUIRE( a.len() == 5 );
REQUIRE( collections::Array<int, 1>{1}.len() == 1 );
}
1- Why I can compile the second REQUIRE
that contains the call with the rvalue
?
Now I am gonna change the len()
member function to this:
[[nodiscard]]
consteval int len() const& noexcept { return sizeof(array) / sizeof(T); }
2- Why I can compile both with the const&
? I suppose that they are two are different ref-qualified usages. I assume that I can make the call with the first one, which is an lvalue
, but can't understand why I can compile the second having defined the len()
method as const&
.
Last change:
[[nodiscard]]
consteval int len() const&& noexcept { return sizeof(array) / sizeof(T); }
And finally, I got a compiler error on a.get<I>()
.
'this' argument to member function 'len' is an lvalue, but function has rvalue ref-qualifier
REQUIRE( a.len() == 5 );
that works perfect if I comment that line of code and I just run:
REQUIRE( collections::Array<int, 1>{1}.len() == 1 );
and also I could use std::move(a)
to perform the cast of a
to an rvalue reference
and make the code compile. But I don't want to do that.
- What is the correct way of code those examples in terms of
ref-qualified
overloads? - Don't forget about the questions on the examples above
EDIT:
I will add another member function that could potentially do different things based on the ref-qualified implementation (or that what I am suppose that could happen):
template <size_t I>
requires concepts::AccessInBounds<I, N>
constexpr T get() const noexcept {
return array[I];
}
template <size_t I>
requires concepts::AccessInBounds<I, N>
constexpr T& get() const& noexcept {
return array[I];
}