A manager is what you need here: it will be slower but all data stored inside will be automatically synced with other processes. Here is a simple example below:
from multiprocessing.managers import BaseManager, public_methods, NamespaceProxy
from multiprocessing import Process
def make_proxy(name, cls, base=None):
"""
Args:
name : A string that should match the variable name the proxy will be assigned to
cls : The class for which you want to create a proxy for
base : If you are subclassing NamespaceProxy (or any other implementation) and want to use that subclass as the
base for this new proxy, then pass the subclass as the base using this argument
"""
exposed = public_methods(cls) + ['__getattribute__', '__setattr__', '__delattr__']
return _MakeProxyType(name, exposed, base)
def _MakeProxyType(name, exposed, base=None):
"""
Attempts to replicate multiprocessing.managers.MakeProxType properly
"""
if base is None:
base = NamespaceProxy
exposed = tuple(exposed)
dic = {}
for meth in exposed:
if hasattr(base, meth):
continue
exec('''def %s(self, *args, **kwds):
return self._callmethod(%r, args, kwds)''' % (meth, meth), dic)
ProxyType = type(name, (base,), dic)
ProxyType._exposed_ = exposed
return ProxyType
class MyStats:
def __init__(self):
self.bytes_read = 0
self.bytes_written = 0
def worker(my_stats):
my_stats.bytes_read = 100
print("Worker process read 100 bytes!")
# Remember to set the name of the variable and the "name" argument to the same value otherwise you will have trouble
# pickling this. If for some reason you cannot do this then you must change the variable's __qualname__ property to
# reflect where the object actually resides so pickle can find it.
MyStatsProxy = make_proxy('MyStatsProxy', MyStats)
if __name__ == "__main__":
# Register our proxy and start the manager process
BaseManager.register("MyStats", MyStats, MyStatsProxy)
manager = BaseManager()
manager.start()
# Create our shared instance and modify it from another process
my_stats = manager.MyStats()
p = Process(target=worker, args=(my_stats,))
p.start()
p.join()
# Check value from main process
print(f"In main process, bytes read are {my_stats.bytes_read}!")
Output
Worker process read 100 bytes!
In main process, bytes read are 100!
Check this question and its answers for more useful information about managers/registering classes and alternate methods to achieve the same result
Note: Keep in mind that managers return pickled values for all objects you access through it. So any modifications you do on mutable objects should be done from within an instance method rather than requesting the mutable object through the proxy and modifying it from outside. For example, doing below will not modify the attribute some_list
in the manager at all, only the local copy (to the process) of this attribute will be modified:
my_stats.some_list[0] = "some value"
Instead, you should create an instance method for modifications and call that instead:
my_stats.modify_list(0, "some value")
Alternatively, you can also force the manager to update the mutable object by re-assigning the new value for the object:
local_copy = my_stats.some_list
local_copy[0] = "some value"
my_stats.some_list = local_copy