I recently asked a question and on how to include both % and N as bar labels and received assistance Include both % and N as bar labels I am trying to use that example in a bar plot over a variable as per the example below:
data = {
'id': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50],
'baseline': [1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1],
'endline': [1, 0, np.nan, 1, 0, 0, 1, np.nan, 1, 0, 0, 1, 0, 0, 1, 0, np.nan, np.nan, 1, 0, 1, np.nan, 0, 1, 0, 1, 0, np.nan, 1, 0, np.nan, 0, 0, 0, np.nan, 1, np.nan, 1, np.nan, 0, np.nan, 1, 1, 0, 1, 1, 1, 0, 1, 1],
'gender': ['male', 'male', 'male', 'male', 'male', 'male', 'male', 'male', 'male', 'male', 'male', 'male', 'male', 'male', 'male', 'male', 'male', 'male', 'male', 'male', 'male', 'female', 'female', 'female', 'female', 'female', 'female', 'female', 'female', 'female', 'female', 'female', 'female', 'female', 'female', 'female', 'female', 'female', 'female', 'female', 'female', 'female', 'female', 'female', 'female', 'female', 'female', 'female', 'female', 'female']
}
df = pd.DataFrame(data)
sns.set_style('white')
ax = sns.barplot(data = df.melt(id_vars = ['id', 'gender'], value_vars = ['baseline', 'endline']),
x = 'variable', y = 'value',
estimator=lambda x: np.sum(x) / np.size(x) * 100, ci=None,
color='cornflowerblue', hue = 'gender')
N = df.melt(id_vars = ['id', 'gender'], value_vars = ['baseline', 'endline']).groupby(['gender', 'variable'], sort=False)['value'].count().to_numpy()
N_it = '$\it{N}$'
labels=[f'{np.round(perc,1)}% ({N_it} = {n})'
for perc, n in zip(ax.containers[0].datavalues, N)]
ax.bar_label(ax.containers[0], labels = labels, fontsize = 10)
ax.bar_label(ax.containers[1], labels = labels, fontsize = 10)
sns.despine(ax = ax, left = True)
ax.grid(True, axis = 'y')
ax.yaxis.set_major_formatter(PercentFormatter(100))
ax.set_xlabel('')
ax.set_ylabel('')
plt.tight_layout()
plt.show()
but it seems I am missing something in getting the right results.