-1

I have a dataframe in key value sequence but i am able to handle acces a particular key value in this dataframe.

how can i access a indiviual dataframe at time like kwh1

`

 {'Kwh1': '3750.13', 'Kwh2': '3456.04', 'Kwh3':...
    {'Kwh1': '3750.14', 'Kwh2': '3456.04', 'Kwh3':...
    {'Kwh1': '3750.15', 'Kwh2': '3456.04', 'Kwh3':...
    {'Kwh1': '3750.15', 'Kwh2': '3456.04', 'Kwh3':...
    {'Kwh1': '3750.16', 'Kwh2': '3456.04', 'Kwh3':...
                               ...
    {'Kwh1': '3751.94', 'Kwh2': '3456.04', 'Kwh3':...
    {'Kwh1': '3751.95', 'Kwh2': '3456.04', 'Kwh3':...
    {'Kwh1': '3751.95', 'Kwh2': '3456.04', 'Kwh3':...
    {'Kwh1': '3751.96', 'Kwh2': '3456.04', 'Kwh3':...
    {'Kwh1': '3751.97', 'Kwh2': '3456.04', 'Kwh3':...

`

1 Answers1

1

If there are dictionaries in column col use:

df['Kwh1'] = df['col'].str.get('Kwh1')

If there are string repr of dictionaries in column col use:

import ast

df['Kwh1'] = df['col'].apply(ast.literal_eval).str.get('Kwh1')

If need all keys to columns:

df1 = df.join(pd.json_normalize(df['col']))
df1 = df.join(pd.json_normalize(df['col'].apply(ast.literal_eval)))
jezrael
  • 822,522
  • 95
  • 1,334
  • 1,252