I have a program which accesses single bytes in a large array at random. Since this array exceeds the L2 cache, it requires many queries to RAM. I created a benchmark which emulates this program by generating random numbers and querying a large array. It seems like the benchmark is under-performing relative to my RAM's advertised speed.
I have DDR4-2933 RAM which is supposed to handle 2933 MT/s. The maximum transfer rate I have been able to achieve is 56.8 MT/s. What would be the bottleneck preventing faster execution? If I had to speculate, I might say the CPU could only reorder instructions within some fixed window and this would limit the parallelization of the fetches. Although, I have no evidence beyond the benchmarks.
Benchmark & Methodology
I created a short program which populates a large array with random numbers. Then, it loads values at random offsets from the array and XORs them together. Memory accesses should be reorderable.
#include <stdint.h>
#include <stdlib.h>
#include <time.h>
#include <stdio.h>
#include <sys/mman.h>
/* XOROSHIRO PRNG */
static inline uint64_t rotl(const uint64_t x, int k) {
return (x << k) | (x >> (64 - k));
}
static uint64_t s[4];
uint64_t next(void) {
const uint64_t result = rotl(s[1] * 5, 7) * 9;
const uint64_t t = s[1] << 17;
s[2] ^= s[0];
s[3] ^= s[1];
s[1] ^= s[2];
s[0] ^= s[3];
s[2] ^= t;
s[3] = rotl(s[3], 45);
return result;
}
/* BENCHMARK */
int main(int argc, char ** argv) {
char const * prog = argc > 0 ? argv[0] : "[program]";
if(argc != 3) {
fprintf(stderr, "Usage: %s [size (power of 2)] [n_runs]", prog);
exit(1);
}
unsigned int sshift = strtol(argv[1], NULL, 10);
uint64_t calls = strtol(argv[2], NULL, 10);
size_t size = 1ull << sshift;
uint64_t smask = (1ull << sshift) - 1;
uint8_t * buf = malloc(size);
if(!buf) {
fprintf(stderr, "no mem");
exit(1);
}
// Seed PRNG with magic values
s[0] = 0x0BE38E2AC;
s[1] = 0x23D933C53;
s[2] = 0xE72482E32;
s[3] = 0x35C339D23;
for(size_t i = 0; i < size; i++) {
buf[i] = next();
}
clock_t start = clock();
double cpu_time_used;
uint8_t val = 0;
for(size_t i = 0; i < calls; i++) {
uint64_t idx = next() & smask;
val ^= buf[idx];
}
cpu_time_used = ((double) (clock() - start)) / CLOCKS_PER_SEC;
printf("time: %.3f\n", cpu_time_used);
printf("calls: %ld\n", calls);
printf("time/call: %.3e\n", cpu_time_used / calls);
printf("MT / sec: %.3e\n", calls / cpu_time_used / 1e6);
printf("val: %d\n", val); // ensure val is not optimized out
}
All benchmarks were executed on a Intel(R) Core(TM) i9-10885H CPU running at 2.40 GHz with CPU scaling disabled. The program was compiled with gcc -O3 main.c -o main -g -O3 -flto
and called with nice -n -2 ./main 31 1000000000
for an array of size 2^31 and 1e9 accesses. The number of transactions per second issued to RAM can be approximated by the number of bytes fetched since virtually all of the lookups result in cache missed. I tested this using perf
and it seemed like around 95% of cache lookups resulted in misses.
The random number generator occupies about 7.1% of program overhead. This was measured by removing the line val ^= buf[idx];
which executes the fetch. perf
reported around 99% of memory overhead was due to last-level cache misses.
Follow-up Benchmarks
Loop unrolling:
By default, GCC 12.2.0 did not unroll the loop. It took some cajoling. I replaced:
for(size_t i = 0; i < calls; i++) {
uint64_t idx = next() & smask;
val ^= buf[idx];
}
with:
for(size_t i = 0; i < batches; i++) {
#pragma GCC unroll 3
for(size_t j = 0; j < 8; j++) {
uint64_t idx = next() & smask;
val ^= buf[idx];
}
}
I look five timings at 2.0 GHz
. The version without loop unrolling seemed to perform better but not significantly. I'm not very surprised since the branch would seem highly predictable.
no unrolling unrolling
0 23.249 24.287
1 24.044 24.520
2 23.455 24.358
3 23.233 24.167
4 22.969 23.833
Multi-processing
I implemented a threaded version of the benchmark. It evenly divides the accesses among the threads. I also switch to measuring wall clock time. Here are the measurements (taken at 2.4 GHz):
threads time MT/s
0 1 17.345 57.653502
1 2 8.949 111.744329
2 4 5.022 199.123855
3 8 3.533 283.045570
4 16 3.203 312.207306
5 32 3.200 312.500000
6 64 3.173 315.159155
7 124 3.165 315.955766
Modified program:
#include <stdint.h>
#include <stdlib.h>
#include <time.h>
#include <stdio.h>
#include <sys/mman.h>
#include <threads.h>
#include <pthread.h>
/* XOROSHIRO PRNG */
static inline uint64_t rotl(const uint64_t x, int k) {
return (x << k) | (x >> (64 - k));
}
static thread_local uint64_t s[4];
static uint64_t next(void) {
const uint64_t result = rotl(s[1] * 5, 7) * 9;
const uint64_t t = s[1] << 17;
s[2] ^= s[0];
s[3] ^= s[1];
s[1] ^= s[2];
s[0] ^= s[3];
s[2] ^= t;
s[3] = rotl(s[3], 45);
return result;
}
struct xor_args {
size_t iters;
uint8_t * buf;
uint8_t res;
uint64_t smask;
pthread_t id;
};
#include <sys/random.h>
void * xor_worker(struct xor_args * a) {
if(-1 == getrandom(&s, sizeof(s), GRND_RANDOM)) {
fprintf(stderr, "getrandom() failed\n");
exit(1);
}
uint8_t val = 0;
for(size_t i = 0; i < a->iters; i++) {
uint64_t idx = next() & a->smask;
val ^= a->buf[idx];
}
a->res = val;
return NULL;
}
/* BENCHMARK */
int main(int argc, char ** argv) {
char const * prog = argc > 0 ? argv[0] : "[program]";
if(argc != 4) {
fprintf(stderr, "Usage: %s [size (power of 2)] [n_runs] [threads]", prog);
exit(1);
}
unsigned int sshift = strtol(argv[1], NULL, 10);
uint64_t calls = strtol(argv[2], NULL, 10);
int threads = strtol(argv[3], NULL, 10);
size_t size = 1ull << sshift;
uint64_t smask = (1ull << sshift) - 1;
uint8_t * buf = malloc(size);
if(!buf) {
fprintf(stderr, "no mem");
exit(1);
}
// Seed PRNG with magic values
s[0] = 0x0BE38E2AC;
s[1] = 0x23D933C53;
s[2] = 0xE72482E32;
s[3] = 0x35C339D23;
for(size_t i = 0; i < size; i++) {
buf[i] = next();
}
struct timespec start, finish;
double elapsed;
clock_gettime(CLOCK_MONOTONIC, &start);
struct xor_args * args = malloc(sizeof(struct xor_args) * threads);
int s;
for(int i = 0; i < threads; i++) {
struct xor_args * arg = &args[i];
arg->iters = calls / (uint64_t) threads;
if(i == 0) {
args->iters += calls % threads;
}
arg->smask = smask;
arg->buf = buf;
s = pthread_create(&arg->id, NULL, (void * (*)(void *)) xor_worker, arg);
if(s != 0) {
fprintf(stderr, "pthread_create() failed");
exit(1);
}
}
uint8_t val = 0;
for(int i = 0; i < threads; i++) {
struct xor_args * arg = &args[i];
s = pthread_join(arg->id, NULL);
if(s != 0) {
fprintf(stderr, "pthread_join() failed");
exit(1);
}
val ^= arg->res;
}
clock_gettime(CLOCK_MONOTONIC, &finish);
elapsed = (finish.tv_sec - start.tv_sec);
elapsed += (finish.tv_nsec - start.tv_nsec) / 1000000000.0;
printf("time: %.3f\n", elapsed);
printf("calls: %ld\n", calls);
printf("time/call: %.3e\n", elapsed / calls);
printf("M T / sec: %.3e\n", calls / elapsed / 1e6);
printf("val: %d\n", val); // ensure val is not optimized out
}