I am trying to use great expectations, The function i want to use is "expect_compound_columns_to_be_unique". This is the code (main code - template);
import datetime
import pandas as pd
import great_expectations as ge
import great_expectations.jupyter_ux
from great_expectations.core.batch import BatchRequest
from great_expectations.checkpoint import SimpleCheckpoint
from great_expectations.exceptions import DataContextError
context = ge.data_context.DataContext()
# Note that if you modify this batch request, you may save the new version as a .json file
# to pass in later via the --batch-request option
batch_request = {'datasource_name': 'impala_okh', 'data_connector_name': 'default_inferred_data_connector_name', 'data_asset_name': 'okh.okh_forecast_prod', 'limit': 1000}
# Feel free to change the name of your suite here. Renaming this will not remove the other one.
expectation_suite_name = "okh_forecast_prod"
try:
suite = context.get_expectation_suite(expectation_suite_name=expectation_suite_name)
print(f'Loaded ExpectationSuite "{suite.expectation_suite_name}" containing {len(suite.expectations)} expectations.')
except DataContextError:
suite = context.create_expectation_suite(expectation_suite_name=expectation_suite_name)
print(f'Created ExpectationSuite "{suite.expectation_suite_name}".')
validator = context.get_validator(
batch_request=BatchRequest(**batch_request),
expectation_suite_name=expectation_suite_name
)
column_names = [f'"{column_name}"' for column_name in validator.columns()]
print(f"Columns: {', '.join(column_names)}.")
validator.head(n_rows=5, fetch_all=False)
the function (error in here);
validator.expect_compound_columns_to_be_unique(['column1', 'column2'])
Then i am getting following error;
MetricResolutionError: Cannot compile Column object until its 'name' is assigned.
How can i solve this problem?