I am working in Google Vertex AI, which has a two-disk system of a boot disk and a data disk, the latter of which is mounted to /home/jupyter. I am trying to expose python venv environments with kernelspec files, and then keep those environments exposed across repeated stop-start cycles. All of the default locations for kernelspec files are on the boot disk, which is ephemeral and recreated each time the VM is started (i.e., the exposed kernels vaporize each time the VM is stopped). Conceptually, I want to use a VM start-up script to add a persistent data disk path to the JUPYTER_PATH variable, since, according to the documentation, "Jupyter uses a search path to find installable data files, such as kernelspecs and notebook extensions." During interactive testing in the Terminal, I have not found this to be true. I have also tried setting the data directory variable, but it does not help.
export JUPYTER_PATH=/home/jupyter/envs
export JUPYTER_DATA_DIR=/home/jupyter/envs
I have a beginner's understanding of jupyter and of the important ramifications of using two-disk systems. Could someone please help me understand:
(1) Why is Jupyter failing to search for kernelspec files on the JUPYTER_PATH or in the JUPYTER_DATA_DIR?
(2) If I am mistaken about how the search paths work, what is the best strategy for maintaining virtual environment exposure when Jupyter is installed on an ephemeral boot disk? (Note, I am aware of nb_conda_kernels, which I am specifically avoiding)
A related post focused on the start-up script can be found at this url. Here I am more interested in the general Jupyter + two-disk use case.