Say I have vectors x and y and want to calculate the second derivative of y with respect to x using finite differences.
I'd do
x <- rnorm(2000)
y <- x^2
y = y[order(x)]
x = sort(x)
dydx = diff(y) / diff(x)
d2ydx2 = c(NA, NA, diff(dydx) / diff(x[-1]))
plot(x, d2ydx2)
As you can see, there are a few points which are wildly inaccurate. I believe the problem arises because values in dydx do not exactly correspond to those of x[-1] leading a second differentiation to have inaccurate results. Since the step in x is non-constant, the second-order differentiation is not straight forward. How can I do this?