There's quite a bit going on here, and I think it's valuable to talk about it.
linspace
I suggest you read the linspace documentation.
https://numpy.org/doc/stable/reference/generated/numpy.linspace.html
If you want a 16x16 grid, then you should start by generating 16x16=256 values, however if you inspect the shape of the all_colors_int
array, you'll notice that it's only generated 50 values, which is the default value of the linspace num
argument.
all_colors_int = np.linspace(0, (255 << 16) + (255 << 8) + 255, dtype=int)
print(all_colors_int.shape) # (50,)
Make sure you specify this third 'num' argument to generate the correct quantity of RGB pixels.
As a further side note, (255 << 16) + (255 << 8) + 255
is equivalent to (2^24)-1
. The 2^N-1
formula is usually what's used to fill the first N bits of an integer with 1's.
numpy is faster
On your next line, your for loop manually iterates over all of the elements in python.
rgb_colors = np.array(tuple(((((255<<16)&k)>>16), ((255<<8)&k)>>8, (255)&k) for k in all_colors_int))
While this might work, this isn't considered the correct way to use numpy arrays.
You can directly perform bitwise operations to the entire numpy array without the python for loop. For example, to extract bits [16, 24) (which is usually the red channel in an RGB integer):
# Shift over so the 16th bit is now bit 0, then select only the first 8 bits.
RedChannel = (all_colors_int >> 16) & 255
Building the grid
There are many ways to do this in numpy, however I would suggest this approach.
Images are usually represented with a 3-dimensional numpy array, usually of the form
(HEIGHT, WIDTH, CHANNELS)
First, reshape
your numpy int array into the 16x16 grid that you want.
reshaped = all_colors_int.reshape((16, 16))
Again, the numpy documentation is really great, give it a read:
https://numpy.org/doc/stable/reference/generated/numpy.reshape.html
Now, extract the red, green and blue channels, as described above, from this reshaped array. If you operate directly on the numpy array, you won't need a nested for-loop to iterate over the 16x16 grid, numpy will handle this for you.
RedChannel = (reshaped >> 16) & 255
GreenChannel = ... # TODO
BlueChannel = ... # TODO
And then finally, we can convert our 3, 16x16 grids, into a 16x16x3 grid, using the numpy stack
function
https://numpy.org/doc/stable/reference/generated/numpy.stack.html
grid_rgb = np.stack((
RedChannel,
GreenChannel,
BlueChannel
), axis=2).astype(np.uint8)
Notice two things here
- When we 'stack' arrays, we create a new dimension. The
axis=2
argument tells numpy to add this new dimension at index 2 (e.g. the third axis). Without this, the shape of our grid would be (3, 16, 16)
instead of (16, 16, 3)
- The
.astype(np.uint8)
casts all of the values in this numpy array into a uint8 data type. This is so the grid is compatible with other image manipulation libraries, such as openCV, and PIL.
Show the image
We can use PIL for this.
If you want to use OpenCV, then remember that OpenCV interprets images as BGR
not RGB
and so your channels will be inverted.
# Show Image
from PIL import Image
Image.fromarray(grid_rgb).show()
If you've done everything right, you'll see an image... And it's all gray.
Why is it gray?
There are over 16 million possible colours. Selecting only 256 of them just so happens to select only pixels with the same R, G and B values which results in an image without any color.
If you want to see some colours, you'll need to either show a bigger image (e.g. 256x256), or alternatively, you can use a dimension that's not a power of two. For example, try a prime number, as this will add a small amount of pseudo-randomness to the RGB selection, e.g. try 17.
Best of luck.